如圖,某動物園要建造兩間完全相同的矩形熊貓居室,其總面積為24平方米,設(shè)熊貓居室的一面墻AD的長為x米 .

(1)用x表示墻AB的長;
(2)假設(shè)所建熊貓居室的墻壁造價(在墻壁高度一定的前提下)為每米1000元,請將墻壁的總造價y(元)表示為x(米)的函數(shù);
(3)當(dāng)x為何值時,墻壁的總造價最低?

(1)
(2)
(3)當(dāng)為4米時,墻壁的總造價最低

解析試題分析:解:(1)   2分
(2)根據(jù)矩形的面積公式為長乘以寬來解得,  5分(沒寫出定義域不扣分)
(3)由
當(dāng)且僅當(dāng),即時取等號
(米)時,墻壁的總造價最低為24000元.
答:當(dāng)為4米時,墻壁的總造價最低.  8分
考點:函數(shù)的運用
點評:主要是考查了函數(shù)的模型的運用,考查了分析問題和解決問題的能力屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)),
(1)求函數(shù)的單調(diào)區(qū)間,并確定其零點個數(shù);
(2)若在其定義域內(nèi)單調(diào)遞增,求的取值范圍;
(3)證明不等式 ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某水域一艘裝載濃硫酸的貨船發(fā)生側(cè)翻,導(dǎo)致濃硫酸泄漏,對河水造成了污染.為減少對環(huán)境的影響,環(huán)保部門迅速反應(yīng),及時向污染河道投入固體堿,個單位的固體堿在水中逐漸溶化,水中的堿濃度與時間(小時)的關(guān)系可近似地表示為:,只有當(dāng)污染河道水中堿的濃度不低于時,才能對污染產(chǎn)生有效的抑制作用.
(Ⅰ) 如果只投放1個單位的固體堿,則能夠維持有效的抑制作用的時間有多長?
(Ⅱ) 第一次投放1單位固體堿后,當(dāng)污染河道水中的堿濃度減少到時,馬上再投放1個單位的固體堿,設(shè)第二次投放后水中堿濃度為,求的函數(shù)式及水中堿濃度的最大值.(此時水中堿濃度為兩次投放的濃度的累加)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

據(jù)行業(yè)協(xié)會預(yù)測:某公司以每噸10萬元的價格銷售某種化工產(chǎn)品,可售出該產(chǎn)品1000 噸,若將該產(chǎn)品每噸的價格上漲%,則銷售量將減少%,且該化工產(chǎn)品每噸的價格上漲幅度不超過%,其中為正常數(shù) 
(1)當(dāng)時,該產(chǎn)品每噸的價格上漲百分之幾,可使銷售的總金額最大?
(2)如果漲價能使銷售總金額比原銷售總金額多,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=|x+1|,g(x)=2|x|+a.
(1)當(dāng)a=0時,解不等式f(x)≥g(x);
(2)若任意x∈R,f(x)g(x)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

周長為20cm的矩形,繞一條邊旋轉(zhuǎn)成一個圓柱,則圓柱體積的最大值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)處取得極小值.
(1)求的值;
(2)若處的切線方程為,求證:當(dāng)時,曲線不可能在直線的下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

提高大橋的車輛通行能力可改善整個城市的交通狀況.一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù).當(dāng)車流密度不超過50輛/千米時,車流速度為30千米/小時.研究表明:當(dāng)50<x≤200時,車流速度v與車流密度x滿足,當(dāng)橋上的車流密度達(dá)到200輛/千米時,造成堵塞,此時車流速度為0千米/小時.
(Ⅰ) 當(dāng)0<x≤200時,求函數(shù)v(x)的表達(dá)式;
(Ⅱ) 當(dāng)車流密度x為多大時,車流量(單位時間內(nèi)通過橋上觀測點的車輛數(shù),單位:輛/小時)f(x)=x·v(x)可以達(dá)到最大,并求出最大值.(精確到個位,參考數(shù)據(jù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)某市現(xiàn)有從事第二產(chǎn)業(yè)人員100萬人,平均每人每年創(chuàng)造產(chǎn)值a萬元(a為正常數(shù)),現(xiàn)在決定從中分流x萬人去加強(qiáng)第三產(chǎn)業(yè)。分流后,繼續(xù)從事第二產(chǎn)業(yè)的人員平均每人每年創(chuàng)造產(chǎn)值可增加2x%(0<x<100)。而分流出的從事第三產(chǎn)業(yè)的人員,平均每人每年可創(chuàng)造產(chǎn)值1.2a萬元。
(1)若要保證第二產(chǎn)業(yè)的產(chǎn)值不減少,求x的取值范圍;
(2)在(1)的條件下,問應(yīng)分流出多少人,才能使該市第二、三產(chǎn)業(yè)的總產(chǎn)值增加最多?

查看答案和解析>>

同步練習(xí)冊答案