已知函數(shù)),
(1)求函數(shù)的單調(diào)區(qū)間,并確定其零點(diǎn)個(gè)數(shù);
(2)若在其定義域內(nèi)單調(diào)遞增,求的取值范圍;
(3)證明不等式 ).

(1)當(dāng)時(shí),的減區(qū)間,的增區(qū)間,有且只有一個(gè)零點(diǎn);當(dāng)時(shí),的增區(qū)間,的減區(qū)間,有且只有一個(gè)零點(diǎn).
(2)
(3)由(2)可知 當(dāng)時(shí),內(nèi)單調(diào)遞增,
所以當(dāng)時(shí), 即   放縮法來(lái)得到。

解析試題分析:解:(1)                 1分

                 2分
(i)若,則當(dāng)時(shí),;當(dāng)時(shí),
所以 的增區(qū)間,的減區(qū)間.        3分
極大值為
所以只有一個(gè)零點(diǎn).
(ii)若,則當(dāng)時(shí),;當(dāng)時(shí),
所以 的減區(qū)間,的增區(qū)間.
極小值為              4分
所以只有一個(gè)零點(diǎn).
綜上所述,
當(dāng)時(shí),的減區(qū)間,的增區(qū)間,有且只有一個(gè)零點(diǎn);
當(dāng)時(shí),的增區(qū)間,的減區(qū)間,有且只有一個(gè)零點(diǎn).
5分
(2)
              6分
在其定義域內(nèi)單調(diào)遞增,可知,恒成立.
  恒成立.          7分
(法一)由二次函數(shù)的圖象(開(kāi)口向上,過(guò)定點(diǎn))可得 
8分


.
可以驗(yàn)證 當(dāng)時(shí)在其定義域內(nèi)單調(diào)遞增
.                         9分
(法二)分離變量
 (當(dāng)且僅當(dāng),即時(shí)取到等號(hào)) 8分
所以 , 則.
可以驗(yàn)證 當(dāng)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題滿分12分)已知冪函數(shù)為偶函數(shù),且在區(qū)間上是單調(diào)增函數(shù).
⑴求函數(shù)的解析式;
⑵設(shè)函數(shù),若的兩個(gè)實(shí)根分別在區(qū)間內(nèi),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),其中為常數(shù), ,函數(shù)的圖象與坐標(biāo)軸交點(diǎn)處的切線為,函數(shù)的圖象與直線交點(diǎn)處的切線為,且。
(Ⅰ)若對(duì)任意的,不等式成立,求實(shí)數(shù)的取值范圍.
(Ⅱ)對(duì)于函數(shù)公共定義域內(nèi)的任意實(shí)數(shù)。我們把 的值稱為兩函數(shù)在處的偏差。求證:函數(shù)在其公共定義域的所有偏差都大于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù) f(x)=ax+lnx,其中a為常數(shù),設(shè)e為自然對(duì)數(shù)的底數(shù).
(1)當(dāng)a=-1時(shí),求的最大值;
(2)若f(x)在區(qū)間(0,e]上的最大值為-3,求a的值;
(3)當(dāng)a=-1時(shí),試推斷方程是否有實(shí)數(shù)解 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知是定義在上的偶函數(shù),且時(shí),
(Ⅰ)求,;
(Ⅱ)求函數(shù)的表達(dá)式;
(Ⅲ)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)的導(dǎo)函數(shù)的圖像與直線平行,且處取得極小值.設(shè)
(1)若曲線上的點(diǎn)到點(diǎn)的距離的最小值為,求的值;
(2)如何取值時(shí),函數(shù)存在零點(diǎn),并求出零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù),
(1)若,求證:函數(shù)上的奇函數(shù);
(2)若函數(shù)在區(qū)間上沒(méi)有零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某工廠修建一個(gè)長(zhǎng)方體無(wú)蓋蓄水池,其容積為4 800立方米,深度為3米.池底每平方米的造價(jià)為150元,池壁每平方米的造價(jià)為120元.設(shè)池底長(zhǎng)方形長(zhǎng)為x米.
(1)求底面積,并用含x的表達(dá)式表示池壁面積;
(2)怎樣設(shè)計(jì)水池能使總造價(jià)最低?最低造價(jià)是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,某動(dòng)物園要建造兩間完全相同的矩形熊貓居室,其總面積為24平方米,設(shè)熊貓居室的一面墻AD的長(zhǎng)為x米 .

(1)用x表示墻AB的長(zhǎng);
(2)假設(shè)所建熊貓居室的墻壁造價(jià)(在墻壁高度一定的前提下)為每米1000元,請(qǐng)將墻壁的總造價(jià)y(元)表示為x(米)的函數(shù);
(3)當(dāng)x為何值時(shí),墻壁的總造價(jià)最低?

查看答案和解析>>

同步練習(xí)冊(cè)答案