【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓(ab0)的左、右焦點(diǎn)分別為F1,F2,過(guò)點(diǎn)F2的直線交橢圓于MN兩點(diǎn).已知橢圓的短軸長(zhǎng)為,離心率為

1)求橢圓的標(biāo)準(zhǔn)方程;

2)當(dāng)直線MN的斜率為時(shí),求的值;

3)若以MN為直徑的圓與x軸相交的右交點(diǎn)為P(t0),求實(shí)數(shù)t的取值范圍.

【答案】123

【解析】

1)設(shè)焦距2c,由題得到關(guān)于的方程組,解方程組即得解;

(2)先求出點(diǎn)的坐標(biāo),再利用兩點(diǎn)間的距離公式得解;

(3)先討論當(dāng)直線MN斜率不存在時(shí),;再討論直線斜率存在的情況,聯(lián)立直線和橢圓方程得到韋達(dá)定理,再根據(jù)得到,解不等式組綜合即得解.

解:(1)設(shè)焦距2c,,

故橢圓的標(biāo)準(zhǔn)方程為:;

2)由(1)知,c2,則F2(2,0)

,或,

因此,;

3)當(dāng)直線MN斜率不存在時(shí),MNx2,,

MN為直徑的圓方程為:,

其與x軸相交的右交點(diǎn)為(0),即;

當(dāng)MN的斜率存在時(shí),設(shè)MN,M(),N(,)

所以,

,

因?yàn)?/span>P在以MN為直徑的圓上,則

所以

所以

所以

所以,

因?yàn)?/span>

所以.

P是右交點(diǎn),故t2,

因此,

解得

綜合得.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正三棱柱(側(cè)棱垂直于底面,且底面三角形是等邊三角形)中,分別是的中點(diǎn).

1)求證:平面∥平面;

2)在線段上是否存在一點(diǎn)使平面?若存在,確定點(diǎn)的位置;若不存在,也請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若存在極值,求實(shí)數(shù)a的取值范圍;

2)設(shè),設(shè)是定義在上的函數(shù).

)證明:上為單調(diào)遞增函數(shù)(的導(dǎo)函數(shù));

)討論的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖為某街區(qū)道路示意圖,圖中的實(shí)線為道路,每段道路旁的數(shù)字表示單向通過(guò)此段道路時(shí)會(huì)遇見(jiàn)的行人人數(shù),在防控新冠肺炎疫情期間,某人需要從A點(diǎn)由圖中的道路到B點(diǎn),為避免人員聚集,此人選擇了一條遇見(jiàn)的行人總?cè)藬?shù)最小的從AB的行走線路,則此人從AB遇見(jiàn)的行人總?cè)藬?shù)最小值是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線的焦點(diǎn)到直線的距離為,過(guò)點(diǎn)的直線交于、兩點(diǎn).

1)求拋物線的準(zhǔn)線方程;

2)設(shè)直線的斜率為,直線的斜率為,若,且的交點(diǎn)在拋物線上,求直線的斜率和點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】明代商人程大位在公元1592年編撰完成《算法統(tǒng)宗》一書(shū).書(shū)中有如下問(wèn)題:今有女子善織,初日遲,次日加倍,第三日轉(zhuǎn)速倍增,第四日又倍增,織成絹六丈七尺五寸.問(wèn)各日織若干?意思是:有一位女子善于織布,第一天由于不熟悉有點(diǎn)慢,第二天起每天織的布都是前一天的2倍,已知她前四天共織布675寸,問(wèn)這位女子每天織布多少?根據(jù)文中的已知條件,可求得該女了第一天織布________尺,若織布一周(7天),共織________.(其中1丈為10尺,1尺為10寸)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)正四面體ABCD的頂點(diǎn)A作一個(gè)形狀為等腰三角形的截面,且使截面與底面BCD所成的角為,這樣的截面有(

A.6個(gè)B.12個(gè)C.16個(gè)D.18個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2020年寒假是特殊的寒假,因?yàn)橐咔槿w學(xué)生只能在家進(jìn)行網(wǎng)上在線學(xué)習(xí),為了研究學(xué)生在網(wǎng)上學(xué)習(xí)的情況,某學(xué)校在網(wǎng)上隨機(jī)抽取120名學(xué)生對(duì)線上教育進(jìn)行調(diào)查,其中男生與女生的人數(shù)之比為1113,其中男生30人對(duì)于線上教育滿意,女生中有15名表示對(duì)線上教育不滿意.

1)完成列聯(lián)表,并回答能否有99%的把握認(rèn)為對(duì)線上教育是否滿意與性別有關(guān);

滿意

不滿意

總計(jì)

男生

女生

合計(jì)

120

2)從被調(diào)查中對(duì)線上教育滿意的學(xué)生中,利用分層抽樣抽取8名學(xué)生,再在8名學(xué)生中抽取3名學(xué)生,作線上學(xué)習(xí)的經(jīng)驗(yàn)介紹,其中抽取男生的個(gè)數(shù)為,求出的分布列及期望值.

參考公式:附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

0.706

3.841

5.024

6.635

7.879

10828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)求函數(shù)的單調(diào)區(qū)間與極值.

(2)當(dāng)時(shí),是否存在,使得成立?若存在,求實(shí)數(shù)的取值范圍,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案