(本小題滿分13分) 設(shè)橢圓E中心在原點(diǎn),焦點(diǎn)在x軸上,短軸長為4,點(diǎn)M(2,)在橢圓上,。
(1)求橢圓E的方程;
(2)設(shè)動直線L交橢圓E于A、B兩點(diǎn),且,求△OAB的面積的取值范圍。

(1);(2)S。

解析試題分析:(1)因?yàn)闄E圓E: (a>b>0)過M(2,) ,2b=4
故可求得b=2,a=2  橢圓E的方程為      ……2分
(2)設(shè)A(x1,y1),B(x2,y2),當(dāng)直線L斜率存在時(shí)設(shè)方程為
解方程組,即,
則△=,
(*)……………………4分
,要使,需使,即,
所以, 即   ①………………………7分
將它代入(*)式可得……………………………8分
P到L的距離為

及韋達(dá)定理代入可得……………………10分
當(dāng)時(shí)
 故……………12分
當(dāng)時(shí),
當(dāng)AB的斜率不存在時(shí),  ,
綜上S……………………………13分
考點(diǎn):本題主要考查橢圓標(biāo)準(zhǔn)方程,直線與橢圓的位置關(guān)系。
點(diǎn)評:求橢圓的標(biāo)準(zhǔn)方程是解析幾何的基本問題,涉及直線與橢圓的位置關(guān)系問題,常常運(yùn)用韋達(dá)定理,本題屬于中檔題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸的正半軸上,直線x+y-1=0與拋物線相交于A、B兩點(diǎn),
。
(1) 求拋物線方程;
(2) 在x軸上是否存在一點(diǎn)C,使得三角形ABC是正三角形? 若存在,求出點(diǎn)C的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)

過拋物線焦點(diǎn)垂直于對稱軸的弦叫做拋物線的通徑。如圖,已知拋物線,過其焦點(diǎn)F的直線交拋物線于、 兩點(diǎn)。過、作準(zhǔn)線的垂線,垂足分別為、.

(1)求出拋物線的通徑,證明都是定值,并求出這個(gè)定值;
(2)證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)給定橢圓,稱圓心在原點(diǎn),半徑為的圓是橢圓的“準(zhǔn)圓”。若橢圓的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到的距離為.
(Ⅰ)求橢圓的方程和其“準(zhǔn)圓”方程.
(Ⅱ)點(diǎn)是橢圓的“準(zhǔn)圓”上的一個(gè)動點(diǎn),過動點(diǎn)作直線使得與橢圓都只有一個(gè)交點(diǎn),且分別交其“準(zhǔn)圓”于點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知橢圓M的中心為坐標(biāo)原點(diǎn) ,且焦點(diǎn)在x軸上,若M的一個(gè)頂點(diǎn)恰好是拋物線的焦點(diǎn),M的離心率,過M的右焦點(diǎn)F作不與坐標(biāo)軸垂直的直線,交M于A,B兩點(diǎn)。
(1)求橢圓M的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)N(t,0)是一個(gè)動點(diǎn),且,求實(shí)數(shù)t的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知曲線是動點(diǎn)到兩個(gè)定點(diǎn)距離之比為的點(diǎn)的軌跡。
(1)求曲線的方程;(2)求過點(diǎn)與曲線相切的直線方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(滿分10分)(Ⅰ) 設(shè)橢圓方程的左、右頂點(diǎn)分別為,點(diǎn)M是橢圓上異于的任意一點(diǎn),設(shè)直線的斜率分別為,求證為定值并求出此定值;
(Ⅱ)設(shè)橢圓方程的左、右頂點(diǎn)分別為,點(diǎn)M是橢圓上異于的任意一點(diǎn),設(shè)直線的斜率分別為,利用(Ⅰ)的結(jié)論直接寫出的值。(不必寫出推理過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知雙曲線C的中心在原點(diǎn),拋物線的焦點(diǎn)是雙曲線C的一個(gè)焦點(diǎn),且雙曲線經(jīng)過點(diǎn),又知直線與雙曲線C相交于A、B兩點(diǎn).
(1)求雙曲線C的方程;
(2)若,求實(shí)數(shù)k值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知直線l:y=2x-4交拋物線y2=4x于A,B兩點(diǎn),試在拋物線AOB這段曲線上求一點(diǎn)P,使△PAB的面積最大,并求出這個(gè)最大面積.

查看答案和解析>>

同步練習(xí)冊答案