(滿分10分)(Ⅰ) 設橢圓方程的左、右頂點分別為,點M是橢圓上異于的任意一點,設直線的斜率分別為,求證為定值并求出此定值;
(Ⅱ)設橢圓方程的左、右頂點分別為,點M是橢圓上異于的任意一點,設直線的斜率分別為,利用(Ⅰ)的結論直接寫出的值。(不必寫出推理過程)
科目:高中數學 來源: 題型:解答題
如圖,已知是長軸為的橢圓上三點,點是長軸的一個頂點,過橢圓中心,且.
(1)建立適當的坐標系,求橢圓方程;
(2)如果橢圓上兩點使直線與軸圍成底邊在軸上的等腰三角形,是否總存在實數使?請給出證明.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分13分) 設橢圓E中心在原點,焦點在x軸上,短軸長為4,點M(2,)在橢圓上,。
(1)求橢圓E的方程;
(2)設動直線L交橢圓E于A、B兩點,且,求△OAB的面積的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
如果兩個橢圓的離心率相等,那么就稱這兩個橢圓相似.已知橢圓與橢圓相似,且橢圓的一個短軸端點是拋物線的焦點.
(Ⅰ)試求橢圓的標準方程;
(Ⅱ)設橢圓的中心在原點,對稱軸在坐標軸上,直線與橢圓交于兩點,且與橢圓交于兩點.若線段與線段的中點重合,試判斷橢圓與橢圓是否為相似橢圓?并證明你的判斷.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)
已知雙曲線C與橢圓有相同的焦點,實半軸長為.
(Ⅰ)求雙曲線的方程;
(Ⅱ)若直線與雙曲線有兩個不同的交點和,且
(其中為原點),求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)已知橢圓的焦點坐標為,,且短軸一頂點B滿足,
(Ⅰ) 求橢圓的方程;
(Ⅱ)過的直線l與橢圓交于不同的兩點M、N,則△MN的內切圓的面積是否存在最大值?若存在求出這個最大值及此時的直線方程;若不存在,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題12分)
給定拋物線,是拋物線的焦點,過點的直線與相交于、兩點,為坐標原點.
(Ⅰ)設的斜率為1,求以為直徑的圓的方程;
(Ⅱ)設,求直線的方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com