【題目】已知冪函數(shù)為偶函數(shù).

1)求的解析式;

2)若函數(shù)在區(qū)間(2,3)上為單調(diào)函數(shù),求實數(shù)a的取值范圍.

【答案】1;(2.

【解析】

1)根據(jù)冪函數(shù)的概念和性質(zhì)即可求的解析式;
2)化簡函數(shù),根據(jù)在區(qū)間上為單調(diào)函數(shù),利用二次函數(shù)對稱軸和區(qū)間之間的關(guān)系即可求實數(shù)a的取值范圍.

1)由f(x)為冪函數(shù)知,2m2-6m+5=1,即m2-3m+2=0,得m=1m=2,

m=1時,f(x)=x2,是偶函數(shù),符合題意;

m=2時,f(x)=,為奇函數(shù),不合題意,舍去.

f(x)=;

2)由(1)得

函數(shù)的對稱軸為x=a-1,

由題意知函數(shù)(2,3)上為單調(diào)函數(shù),

a-1≤2a-1≥3,分別解得a≤3a≥4.

即實數(shù)a的取值范圍為:a≤3a≥4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),曲線在點處的切線方程為.

1)求的解析式;

(2)證明:曲線上任一點處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)及關(guān)于的不等式.

(1)若該不等式的解集為,求實數(shù)的值;

(2)若,求函數(shù)的最小值;

(3)若該不等式的解集中有且只兩個整數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,A,B,C的坐標分別為(﹣ ,0),( ,0),(m,n),G,O′,H分別為△ABC的重心,外心,垂心.

(1)寫出重心G的坐標;
(2)求外心O′,垂心H的坐標;
(3)求證:G,H,O′三點共線,且滿足|GH|=2|OG′|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐V-ABC,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BCAC=BC=,O,M分別為AB,VA的中點.

(1)求證:平面MOC⊥平面VAB.

(2)求三棱錐V-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最小正周期為,且圖象關(guān)于直線對稱.

(1)求的解析式;

(2) 若函數(shù)的圖象與直線上只有一個交點,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是東西方向的公路北側(cè)的邊緣線,某公司準備在上的一點的正北方向的處建設(shè)一倉庫,設(shè),并在公路北側(cè)建造邊長為的正方形無頂中轉(zhuǎn)站(其中上),現(xiàn)從倉庫和中轉(zhuǎn)站分別修兩條道路,已知,且

(1)求關(guān)于的函數(shù)解析式,并求出定義域;

(2)如果中轉(zhuǎn)站四堵圍墻造價為10萬元,兩條道路造價為30萬元,問:取何值時,該公司建設(shè)中轉(zhuǎn)站圍墻和兩條道路總造價最低.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,角θ的終邊經(jīng)過點P(x,1)(x≥1),則cosθ+sinθ的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近于圓的面積,并創(chuàng)立了“割圓術(shù)”,利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計的一個程序框圖,則輸出的(四舍五入精確到小數(shù)點后兩位)的值為( )(參考數(shù)據(jù):sin15°=0.2588,sin75°=0.1305)
A.3.10
B.3.11
C.3.12
D.3.13

查看答案和解析>>

同步練習(xí)冊答案