如圖,P是雙曲線=1右支(在第一象限內(nèi))上的任意一點(diǎn),A1,A2分別是左、右頂點(diǎn),O是坐標(biāo)原點(diǎn),直線PA1,PO,PA2的斜率分別為k1,k2,k3,則斜率之積k1k2k3的取值范圍是( )
A.(0,1) B.(0,)
C.(0,) D.(0,)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:中學(xué)教材標(biāo)準(zhǔn)學(xué)案 數(shù)學(xué) 高二上冊(cè) 題型:044
如圖,P是雙曲線-=1(a>0,b>0)右半支上一點(diǎn),F(xiàn)1、F2為雙曲線的左、右焦點(diǎn),圓C為焦點(diǎn)三角形△PF1F2的內(nèi)切圓,求圓C的圓心的橫坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:咸陽(yáng)市2007年高考模擬考試(二)、數(shù)學(xué)試題(理科) 題型:013
如圖,Q是橢圓=1(a>b>0)上一點(diǎn),F(xiàn)1QF2A為左、右焦點(diǎn),過(guò)F1作∠F1QF2外角平分線的垂線交F2Q的延長(zhǎng)線于P點(diǎn),當(dāng)Q點(diǎn)在橢圓上運(yùn)動(dòng)時(shí),P點(diǎn)的軌跡是
A.直線
B.圓
C.橢圓
D.雙曲線
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:福建省四地六校2011-2012學(xué)年高二上學(xué)期第二次月考數(shù)學(xué)理科試題 題型:022
如圖,P是雙曲線-=1(a>0,b>0,xy≠0)上的動(dòng)點(diǎn),F(xiàn)1、F2是雙曲線的左右焦點(diǎn),M是∠F1PF2的平分線上一點(diǎn),且F2M⊥MP某同學(xué)用以下方法研究|OM|:延長(zhǎng)F2M交PF1于點(diǎn)N,可知△PNF2為等腰三角形,且M為F2N的中點(diǎn),得|OM|=|NF1|,…,|OM|=A.類(lèi)似地:P是橢圓+=1(a>b>0),b2+c2=a2,xy≠0上的動(dòng)點(diǎn),F(xiàn)1、F2是橢圓的左右焦點(diǎn),M是∠F1PF2的平分線上一點(diǎn),且F2M⊥MP,則|OM|的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河北省高三3月月考數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知橢圓=1(a>b>0)的離心率為,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)F1、F2為頂點(diǎn)的三角形的周長(zhǎng)為4(+1),一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D.
(1)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(2)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1;
(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com