如圖,已知橢圓=1(a>b>0)的離心率為,以該橢圓上的點和橢圓的左、右焦點F1、F2為頂點的三角形的周長為4(+1),一等軸雙曲線的頂點是該橢圓的焦點,設(shè)P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D.
(1)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(2)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1;
(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.
(1)=1.=1.(2)設(shè)A(x1,y1),B(x2,y2),P(x0,y0),
則k1=,k2=.因為點P在雙曲線x2-y2=4上,所以x-y=4.
因此k1·k2=·==1,即k1·k2=1.
(3)存在λ=,使|AB|+|CD|=λ|AB|·|CD|恒成立.
【解析】
試題分析:(1)設(shè)橢圓的半焦距為c,由題意知:,
2a+2c=4(+1),所以a=2,c=2.
又a2=b2+c2,因此b=2.故橢圓的標(biāo)準(zhǔn)方程為=1.
由題意設(shè)等軸雙曲線的標(biāo)準(zhǔn)方程為=1(m>0),因為等軸雙曲線的頂點是橢圓的焦點,所以m=2,因此雙曲線的標(biāo)準(zhǔn)方程為=1.
(2)設(shè)A(x1,y1),B(x2,y2),P(x0,y0),則k1=,k2=.
因為點P在雙曲線x2-y2=4上,所以x-y=4.
因此k1·k2=·==1,即k1·k2=1.
(3)由于PF1的方程為y=k1(x+2),將其代入橢圓方程得(2k+1)x2-8kx+8k-8=0,
顯然2k+1≠0,顯然Δ>0.由韋達(dá)定理得x1+x2=,x1x2=.
所以|AB|=
=.
同理可得|CD|=.
則,
又k1·k2=1,
所以.
故|AB|+|CD|=|AB|·|CD|.
因此存在λ=,使|AB|+|CD|=λ|AB|·|CD|恒成立.
考點:本題考查了圓錐曲線方程的求法及直線與圓錐曲線的位置關(guān)系
點評:對于直線與圓錐曲線的綜合問題,往往要聯(lián)立方程,同時結(jié)合一元二次方程根與系數(shù)的關(guān)系進(jìn)行求解;而對于最值問題,則可將該表達(dá)式用直線斜率k表示,然后根據(jù)題意將其進(jìn)行化簡結(jié)合表達(dá)式的形式選取最值的計算方式
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2010年普通高等學(xué)校招生全國統(tǒng)一考試、理科數(shù)學(xué)(山東卷) 題型:044
如圖,已知橢圓=1(a>b>0)的離心率為.以該橢圓上的點和橢圓的左、右焦點F1,F(xiàn)2為頂點的三角形的周長為4(+1),一等軸雙曲線的頂點時該橢圓的焦點,設(shè)P為該雙曲線上異于頂點的任一點.直線PF1和PF2與橢圓的焦點分別為A、B和C、D.
(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程:
(Ⅱ)設(shè)直線PF1、PF2的斜率分別為k1,k2,證明:k1·k2=l;
(Ⅲ)是否存在常數(shù),使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在.求λ的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,已知橢圓=1(a>b>0)過點(1,),離心率為,左、右焦點分別為F1、F2.點P為直線l:x+y=2上且不在x軸上的任意一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D,O為坐標(biāo)原點.
(1)求橢圓的標(biāo)準(zhǔn)方程.
(2)設(shè)直線PF1、PF2的斜率分別為k1、k2.
(ⅰ)證明:=2.
(ⅱ)問直線l上是否存在點P,使得直線OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD滿足kOA+kOB+kOC+kOD=0?若存在,求出所有滿足條件的點P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
在平面直角坐標(biāo)系xOy中,如圖,已知橢圓=1的左、右頂點為A、B,右焦點為F.設(shè)過點T(t,m)的直線TA,TB與此橢圓分別交于點M(x1,y1)、N(x2,y2),其中m>0,y1>0,y2<0.
(1)設(shè)動點P滿足PF2-PB2=4,求點P的軌跡;
(2)設(shè)x1=2,x2=,求點T的坐標(biāo);
(3)設(shè)t=9,求證:直線MN必過x軸上的一定點(其坐標(biāo)與m無關(guān)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,已知橢圓=1(a>b>0)的離心率為,以該橢圓上的點和橢圓的左、右焦點F1、F2為頂點的三角形的周長為4(+1),一等軸雙曲線的頂點是該橢圓的焦點,設(shè)P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D.
(1)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(2)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1;
(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com