【題目】已知正方體,過對角線作平面交棱于點,交棱于點,下列不正確的是(

A.平面分正方體所得兩部分的體積相等;

B.四邊形一定是平行四邊形;

C.平面與平面不可能垂直;

D.四邊形的面積有最大值.

【答案】C

【解析】

利用正方體的對稱性即可判斷A正確; 由平行平面的性質(zhì)可判斷B正確;當為棱中點時,通過線面垂直可得面面垂直,判斷C錯誤;結(jié)合異面直線距離說明四邊形的面積最大值取法,判斷D正確.

作出草圖,如下圖:

對于A:由正方體的對稱性可知,平面分正方體所得兩部分的體積相等,故A正確;

對于B:因為平面,平面平面,

平面平面,∴.

同理可證:,故四邊形一定是平行四邊形,故B正確;

對于C:當為棱中點時,平面,又因為平面,

所以平面平面,故C不正確;

對于D:由B得四邊形一定是平行四邊形,所以四邊形的面積等于三角形面積的兩倍,而為定值,所以當到直線距離最大時,三角形面積取最大值,因為為棱中點時, 到直線距離恰為異面直線距離,即為最小值,因此當EA重合或重合時,三角形面積取最大值,即四邊形的面積即取最大值,故D正確.

故選:C.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是奇函數(shù)(其中

1)求實數(shù)m的值;

2)已知關(guān)于x的方程在區(qū)間上有實數(shù)解,求實數(shù)k的取值范圍;

3)當時,的值域是,求實數(shù)na的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC在內(nèi)角A、B、C的對邊分別為a,bc,已知a=bcosC+csinB.

)求B

)若b=2,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項和為Sn,對任意nN*總有2Snan2+n,且anan+1.若對任意nN*,θR,不等式λn+2)恒成立,求實數(shù)λ的最小值( )

A.1B.2C.1D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐P-ABC中,平面PAC⊥平面ABC,∠PAC=BAC=60°,AC=4AP=3,AB=2

1)求三棱錐P-ABC的體積;

2)求點C到平面PAB距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),其導函數(shù)的圖象如圖所示,過點

)求函數(shù)的單調(diào)遞減區(qū)間和極大值點;

)求實數(shù)的值;

)若恰有兩個零點,請直接寫出的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在中, ,沿翻折到的位置,使平面平面.

(1)求證: 平面;

(2)若在線段上有一點滿足,且二面角的大小為,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面、平面、平面、直線以及直線,則下列命題說法錯誤的是( )

A.,則B.,則

C.,則D.,則

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)當函數(shù)有兩個零點,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案