【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意nN*總有2Snan2+n,且anan+1.若對(duì)任意nN*,θR,不等式λn+2)恒成立,求實(shí)數(shù)λ的最小值( )

A.1B.2C.1D.

【答案】B

【解析】

得數(shù)列的遞推關(guān)系,確定數(shù)列是等差數(shù)列,從而得其通項(xiàng)公式,不等式化為λ,不等式右邊分子平方展開(kāi)后應(yīng)用基本不等式可求得其最大值,從而得的最小值.

2Snan2+n,①

可知,當(dāng)n2時(shí),2Sn1an12+(n1),②

①﹣②,得2anan2an12+1,

故(an1)2an12

于是an1an1an1=﹣an1,

an1=﹣an1,則an+an11,不合題意;

于是an1an1,即anan11

即數(shù)列{an}是公差為1的等差數(shù)列,又a11

an1+(n11n.

ann.

依題意知nN*,λ 都成立,

然后通過(guò)基本不等式得,

2,

當(dāng)且僅當(dāng),即時(shí),取“=”,

所以 的最大值為2,

所以λ2

所以λ的最小值為2,

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 垂直于菱形所在平面,且, ,點(diǎn)、分別為邊、的中點(diǎn),點(diǎn)是線(xiàn)段上的動(dòng)點(diǎn).

(I)求證: ;

(II)當(dāng)三棱錐的體積最大時(shí),求點(diǎn)到面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,ab、c分別是角AB、C的對(duì)邊,S是該三角形的面積,且

1)求角A的大。

2)若角A為銳角, ,求邊BC上的中線(xiàn)AD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校研究性學(xué)習(xí)小組對(duì)該校高三學(xué)生視力情況進(jìn)行調(diào)查,在高三全體名學(xué)生中隨機(jī)抽取了名學(xué)生的體檢表,并得到如圖所示的頻率分布直方圖

(Ⅰ)若直方圖中后四組的頻數(shù)成等差數(shù)列,計(jì)算高三全體學(xué)生視力在以下的人數(shù),并估計(jì)這名學(xué)生視力的中位數(shù)(精確到);

(Ⅱ)學(xué)習(xí)小組發(fā)現(xiàn),學(xué)習(xí)成績(jī)突出的學(xué)生,近視的比較多,為了研究學(xué)生的視力與學(xué)習(xí)成績(jī)是否有關(guān)系,對(duì)高三全體成績(jī)名次在前名和后名的學(xué)生進(jìn)行了調(diào)查,部分?jǐn)?shù)據(jù)如表1,根據(jù)表1及臨界表2中的數(shù)據(jù),能否在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為視力與學(xué)習(xí)成績(jī)有關(guān)系?

年段名次

是否近視

近 視

不近視

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.84

5.024

6.635

7.879

10.83

(參考公式: ,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)設(shè)是函數(shù)的極值點(diǎn),求證:

設(shè)是函數(shù)的極值點(diǎn),且恒成立,求實(shí)數(shù)的取值范圍.(其中正

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018年元旦期間,某運(yùn)動(dòng)服裝專(zhuān)賣(mài)店舉辦了一次有獎(jiǎng)促銷(xiāo)活動(dòng),消費(fèi)每超過(guò)400元均可參加1次抽獎(jiǎng)活動(dòng),抽獎(jiǎng)方案有兩種,顧客只能選擇其中的一種.

方案一:顧客轉(zhuǎn)動(dòng)十二等分且質(zhì)地均勻的圓形轉(zhuǎn)盤(pán)(如圖),轉(zhuǎn)盤(pán)停止轉(zhuǎn)動(dòng)時(shí)指針指向哪個(gè)扇形區(qū)域,則顧客可直接獲得該區(qū)域?qū)?yīng)面額(單位:元)的現(xiàn)金優(yōu)惠,且允許顧客轉(zhuǎn)動(dòng)3次.

方案二:顧客轉(zhuǎn)動(dòng)十二等分且質(zhì)地均勻的圓形轉(zhuǎn)盤(pán)(如圖〕,轉(zhuǎn)盤(pán)停止轉(zhuǎn)動(dòng)時(shí)指針若指向陰影部分,則未中獎(jiǎng),若指向白色區(qū)域,則顧客可直接獲得40元現(xiàn)金,且允許顧客轉(zhuǎn)動(dòng)3次.

(1)若兩位顧客均獲得1次抽獎(jiǎng)機(jī)會(huì),且都選擇抽獎(jiǎng)方案一,試求這兩位顧客均獲得180元現(xiàn)金優(yōu)惠的概率;

(2)若某顧客恰好獲得1次抽獎(jiǎng)機(jī)會(huì).

①試分別計(jì)算他選擇兩種抽獎(jiǎng)方案最終獲得現(xiàn)金獎(jiǎng)勵(lì)的數(shù)學(xué)期望;

②從概率的角度比較①中該顧客選擇哪一種抽獎(jiǎng)方案更合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正方體,過(guò)對(duì)角線(xiàn)作平面交棱于點(diǎn),交棱于點(diǎn),下列不正確的是(

A.平面分正方體所得兩部分的體積相等;

B.四邊形一定是平行四邊形;

C.平面與平面不可能垂直;

D.四邊形的面積有最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為自然對(duì)數(shù)的底數(shù),若當(dāng)時(shí), 的最大值為.

(1)求函數(shù)的解析式;

(2)若對(duì)任意的, ,不等式恒成立,求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案