【題目】已知函數(shù)f(x)=|x﹣a|.
(Ⅰ)若不等式f(x)≤2的解集為[0,4],求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若x0∈R,使得f(x0)+f(x0+5)﹣m2<4m,求實數(shù)m的取值范圍.

【答案】解:(Ⅰ)∵|x﹣a|≤2,∴a﹣2≤x≤a+2, ∵f(x)≤2的解集為[0,4],∴ ,∴a=2.
(Ⅱ)∵f(x)+f(x+5)=|x﹣2|+|x+3|≥|(x﹣2)﹣(x+3)|=5,
x0∈R,使得
成立,
∴4m+m2>[f(x)+f(x+5)]min , 即4m+m2>5,解得m<﹣5,或m>1,
∴實數(shù)m的取值范圍是(﹣∞,﹣5)∪(1,+∞)
【解析】(Ⅰ)若不等式f(x)≤2的解集為[0,4],可得 ,即可求實數(shù)a的值;(Ⅱ)根據(jù)第一步所化出的分段函數(shù)求出函數(shù)f(x)的最小值,若x0∈R,使得f(x0)+f(x0+5)﹣m2<4m成立,只需4m+m2>fmin(x),解出實數(shù)m的取值范圍.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC三個內(nèi)角A,B,C所對的邊分別為a,b,c,若c2sinA=5sinC,(a+c)2=16+b2 , 則△ABC的面積是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)數(shù)列{an}的前n項和為Sn . 若對n∈N* , 總k∈N* , 使得Sn=ak , 則稱數(shù)列{an}是“G數(shù)列”. (Ⅰ)若數(shù)列{an}是等差數(shù)列,其首項a1=1,公差d=﹣1.證明:數(shù)列{an}是“G數(shù)列”;
(Ⅱ)若數(shù)列{an}的前n項和Sn=3n(n∈N*),判斷數(shù)列{an}是否為“G數(shù)列”,并說明理由;
(Ⅲ)證明:對任意的等差數(shù)列{an},總存在兩個“G數(shù)列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點F為拋物線E:x2=4y的焦點,直線l為準線,C為拋物線上的一點(C在第一象限),以點C為圓心,|CF|為半徑的圓與y軸交于D,F(xiàn)兩點,且△CDF為正三角形.
(Ⅰ)求圓C的方程;
(Ⅱ)設(shè)P為l上任意一點,過P作拋物線x2=4y的切線,切點為A,B,判斷直線AB與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=ex+acosx(e為自然對數(shù)的底數(shù)).
(1)若f(x)在x=0處的切線過點P(1,6),求實數(shù)a的值;
(2)當x∈[0, ]時,f(x)≥ax恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有如下性質(zhì):如果常數(shù),那么該函數(shù)在上是減函數(shù),在上是增函數(shù).

,函數(shù)在上的最小值為4,求a的值;

對于中的函數(shù)在區(qū)間A上的值域是,求區(qū)間長度最大的注:區(qū)間長度區(qū)間的右端點區(qū)間的左斷點;

中函數(shù)的定義域是解不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知△ABC中A,B,C所對的邊分別為a,b,c, (1﹣cos2B)=8sinBsinC,A+ =π.
(Ⅰ)求cosB的值;
(Ⅱ)若點D在線段BC上,且BD=6,c=5,求△ADC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)y=3tan.

(1)求函數(shù)的最小正周期;

(2)求函數(shù)的定義域;

(3)說明此函數(shù)的圖象是由y=tan x的圖象經(jīng)過怎樣的變換得到的?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在△ABC中,角A,B,C的對邊分別是a,b,c,且有.

(1) 求C;

(2) 若c=3,求△ABC面積的最大值.

查看答案和解析>>

同步練習冊答案