【題目】如圖所示的空間幾何體中,四邊形是邊長為2的正方形, 平面, , , , .
(1)求證:平面平面;
(2)求平面與平面所成的銳二面角的余弦值.
【答案】(Ⅰ)詳見解析(Ⅱ)
【解析】試題分析:(I)連接交于點,根據(jù)正方形的對角線有 ,設(shè)的中點分別為,連接,得,連接,利用平行證得,而,所以平面,所以平面平面.(2)以為坐標原點建立空間直角坐標系,計算平面與平面的法向量,并由此計算二面角的余弦值.
試題解析:
(1)證明:連接交于點,則
設(shè), 的中點分別為, ,連接,則∥,
連接, ,則∥且 ,所以∥,所以∥
由于平面,所以
所以, ,所以平面
所以平面平面
(2)解法一:∵∥,∴∥
∴平面與平面所成的銳二面角即為平面與平面所成的銳二面角
連接,∵平面, ∴
∴為平面與平面所成二面角的一個平面角
∵, ∴
∴
即平面與平面所成的銳二面角的余弦值為
解法二:建立如圖所示空間直角坐標系,
則,
依題意為平面的一個法向量,
設(shè)為平面的一個法向量,則
即令,
則,所以
設(shè)平面與平面所成的銳二面角為,則
即平面與平面所成的銳二面角的余弦值為
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
以直角坐標系的原點O為極點, 軸的正半軸為極軸,且兩個坐標系取相等的單位長度.已知過點P(1,1)的直線的參數(shù)方程是
(I)寫出直線的極坐標方程;
(II)設(shè)與圓相交于兩點A、B,求點P到A、B兩點的距離之積
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
有甲、乙、丙、丁四名網(wǎng)球運動員,通過對過去戰(zhàn)績的統(tǒng)計,在一場比賽中,甲對乙、丙、丁取勝的概率分別為.
(Ⅰ)若甲和乙之間進行三場比賽,求甲恰好勝兩場的概率;
(Ⅱ)若四名運動員每兩人之間進行一場比賽,設(shè)甲獲勝場次為,求隨機變量的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題 “存在”,命題:“曲線表示焦點在軸上的橢圓”,命題 “曲線表示雙曲線”
(1)若“且”是真命題,求實數(shù)的取值范圍;
(2)若是的必要不充分條件,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,多面體中,四邊形是菱形, , 相交于, ,點在平面上的射影恰好是線段的中點.
(Ⅰ)求證: 平面;
(Ⅱ)若直線與平面所成的角為,求平面與平面所成角(銳角)的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+(a+8)x+a2+a﹣12(a<0),且f(a2﹣4)=f(2a﹣8),則 的最小值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的離心率為, 分別是它的左、右焦點,且存在直線,使關(guān)于的對稱點恰好是圓()的一條直線的兩個端點.
(1)求橢圓的方程;
(2)設(shè)直線與拋物線()相交于兩點,射線, 與橢圓分別相交于點,試探究:是否存在數(shù)集,當且僅當時,總存在,使點在以線段為直徑的圓內(nèi)?若存在,求出數(shù)集;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國際奧委會將于2017年9月15日在秘魯利馬召開130次會議決定2024年第33屆奧運會舉辦地。目前德國漢堡、美國波士頓等申辦城市因市民擔心賽事費用超支而相繼退出。某機構(gòu)為調(diào)查我國公民對申辦奧運會的態(tài)度,選了某小區(qū)的100位居民調(diào)查結(jié)果統(tǒng)計如下:
(1)根據(jù)已有數(shù)據(jù),把表格數(shù)據(jù)填寫完整;
(2)能否在犯錯誤的概率不超過5%的前提下認為不同年齡與支持申辦奧運無關(guān)?
(3)已知在被調(diào)查的年齡大于50歲的支持者中有5名女性,其中2位是女教師,現(xiàn)從這5名女性中隨機抽取3人,求至多有1位教師的概率.
附: , .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com