【題目】選修4-4:坐標(biāo)系與參數(shù)方程
以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn), 軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的單位長度.已知過點(diǎn)P(1,1)的直線的參數(shù)方程是
(I)寫出直線的極坐標(biāo)方程;
(II)設(shè)與圓相交于兩點(diǎn)A、B,求點(diǎn)P到A、B兩點(diǎn)的距離之積
【答案】(I);(Ⅱ)2.
【解析】試題分析:(I)消去參數(shù)t得到直線的普通方程,利用極直互化得到極坐標(biāo)方程;;
(II)將圓化成普通方程,再與直線的參數(shù)方程聯(lián)解,得到一個(gè)關(guān)于t的一元二次方程.再用一元二次方程根與系數(shù)的關(guān)系,結(jié)合兩點(diǎn)的距離公式,可得出P到A、B兩點(diǎn)的距離之積.
試題解析:
(I)因?yàn)橹本的參數(shù)方程是.所以直線的普通方程是。化為極坐標(biāo)方程為.
(II)因?yàn)辄c(diǎn)A,B都在直線l上,所以可設(shè)它們對(duì)應(yīng)的參數(shù)為t1和t2,則點(diǎn)A,B的坐標(biāo)分別 .
圓化為直角坐標(biāo)系的方程.
以直線的參數(shù)方程代入圓的方程整理得到
①
因?yàn)?/span>和是方程①的解,從而=-2.
所以|PA|·|PB|= ||=|-2|=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),設(shè)關(guān)于的方程有個(gè)不同的實(shí)數(shù)解,則的所有可能的值為( )
A. 3 B. 1或3 C. 4或6 D. 3或4或6
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域?yàn)?/span>,若函數(shù)滿足:對(duì)于給定的 ,存在,使得成立,那么稱具有性質(zhì).
(1)函數(shù) 是否具有性質(zhì)?說明理由;
(2)已知函數(shù)具有性質(zhì),求的最大值;
(3)已知函數(shù)的定義域?yàn)?/span>,滿足,且的圖像是一條連續(xù)不斷的曲線,問:是否存在正整數(shù)n,使得函數(shù)具有性質(zhì),若存在,求出這樣的n的取值集合;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,是邊長為的棱形,且分別是的中點(diǎn).
(1)證明:平面;
(2)若二面角的大小為,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足Sn=2﹣an , n=1,2,3,….
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足b1=1,且bn+1=bn+an , 求數(shù)列{bn}的通項(xiàng)公式;
(3)設(shè)cn=n(3﹣bn),求數(shù)列{cn}的前n項(xiàng)和為Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在多面體ABCDEF中,ABCD為正方形,EF∥平面ABCD,M為FC的中點(diǎn),AB=2,EF到平面ABCD的距離為2,F(xiàn)C=2.
(1)證明:AF∥平面MBD;
(2)若EF=1,求VF﹣MBE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知含有個(gè)元素的正整數(shù)集(, )具有性質(zhì):對(duì)任意不大于(其中)的正整數(shù),存在數(shù)集的一個(gè)子集,使得該子集所有元素的和等于.
(Ⅰ)寫出, 的值;
(Ⅱ)證明:“, ,…, 成等差數(shù)列”的充要條件是“”;
(Ⅲ)若,求當(dāng)取最小值時(shí)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小學(xué)為了解本校某年級(jí)女生的身高情況,從本校該年級(jí)的學(xué)生中隨機(jī)選出100名女生并統(tǒng)計(jì)她們的身高(單位: ),得到如圖頻率分布表:
分組(身高) | ||||
(Ⅰ)用分層抽樣的方法從身高在和的女生中共抽取6人,則身高在的女生應(yīng)抽取幾人?
(Ⅱ)在(Ⅰ)中抽取的6人中,再隨機(jī)抽取2人,求這2人身高都在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的空間幾何體中,四邊形是邊長為2的正方形, 平面, , , , .
(1)求證:平面平面;
(2)求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com