若直線和⊙O∶相離,則過點的直線與橢圓的交點個數(shù)為(    )
A.至多一個B. 2個C. 1個   D.0個
B

試題分析:由題意可得,,則,所以點在以原點為圓心,以2為半徑的圓內(nèi)的點,而橢圓的長半軸長為3,短半軸長為2,所以圓內(nèi)切于橢圓,即點在橢圓內(nèi),所以過點的直線與橢圓一定相交,它們的公共點的個數(shù)為2,故選B.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線的焦點為,準線為,點為拋物線C上的一點,且的外接圓圓心到準線的距離為

(I)求拋物線C的方程;
(II)若圓F的方程為,過點P作圓F的2條切線分別交軸于點,求面積的最小值時的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直角坐標系中,已知中心在原點,離心率為的橢圓E的一個焦點為圓的圓心.
⑴求橢圓E的方程;
⑵設P是橢圓E上一點,過P作兩條斜率之積為的直線,當直線都與圓相切時,求P點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知曲線,求曲線過點的切線方程。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的左、右焦點和短軸的兩個端點構成邊長為2的正方形.

(Ⅰ)求橢圓的方程;
(Ⅱ)過點的直線與橢圓相交于,兩點.點,記直線的斜率分別為,當最大時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知一條曲線軸右邊,上每一點到點的距離減去它到軸距離的差都等于1.
(1)求曲線C的方程;
(2)若過點M的直線與曲線C有兩個交點,且,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓與雙曲線有共同的焦點,橢圓的一個短軸端點為,直線與雙曲線的一條漸近線平行,橢圓與雙曲線的離心率分別為,則取值范圍為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知F1、F2分別是雙曲線的左、右焦點,P為雙曲線右支上的任意一點且,則雙曲線離心率的取值范圍是(    )
A.(1,2]B.[2 +)C.(1,3]D.[3,+)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設集合A={(x,y)| },B={(x,y)|y=3x},則A∩B的子集的個數(shù)是(  )
A.4 B.3C.2D.1

查看答案和解析>>

同步練習冊答案