【題目】某班同學(xué)利用國(guó)慶節(jié)進(jìn)行社會(huì)實(shí)踐,對(duì)的人群隨機(jī)抽取人進(jìn)行了一次生活習(xí)慣是否符合低碳觀念的調(diào)查,若生活習(xí)慣符合低碳觀念的稱為“低碳族”,否則稱為“非低碳族”.得到如下統(tǒng)計(jì)表和各年齡段人數(shù)頻率分布直方圖:

組數(shù)

分組

低碳組的人數(shù)

占本組的頻率

第一組

120

0.6

第二組

195

第三組

100

0.5

第四組

0.4

第五組

30

0.3

第六組

15

0.3

1)補(bǔ)全頻率分布直方圖,并求,的值;

2)求年齡段人數(shù)的中位數(shù)和眾數(shù);

3)從歲年齡段的“低碳族”中采用分層抽樣法抽取6人參加戶外低碳體驗(yàn)活動(dòng),其中選取3人作為領(lǐng)隊(duì),求選取的3名領(lǐng)隊(duì)中年齡都在歲的概率.

【答案】1)直方圖詳見(jiàn)解析;,;(2)中位數(shù)為35,眾數(shù)為32.5;(3

【解析】

1)根據(jù)頻率直方圖中所有小矩形的面積之和為1進(jìn)行求解即可;

2)根據(jù)中位數(shù)和眾數(shù)在頻率直方圖中的計(jì)算方法進(jìn)行求解即可;

3)根據(jù)分層抽樣比,結(jié)合組合數(shù)的計(jì)算方法、古典概型的計(jì)算方法進(jìn)行求解即可.

解:(1)第二組的概率為,

所以高為.頻率直方圖如圖:

第一組的人數(shù)為,頻率為,

所以

由題可知,第二組的頻率為0.3,所以第二組的人數(shù)為,

所以,第四組的頻率為,

所以第四組的人數(shù)為,所以

2)因?yàn)?/span>,所以中位數(shù)為35;眾數(shù)為

3)因?yàn)?/span>年齡段的“低碳族”與歲年齡段的

“低碳族”的比值為,

所以采用分層抽樣法抽取6人,歲中有4人,歲中有2人.

由于從6人中選取3人作領(lǐng)隊(duì)的所有可能情況共種,

其中從歲中的4人中選取3名領(lǐng)隊(duì)的情況有種,

故選取的3名領(lǐng)隊(duì)中年齡都在歲的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象的一個(gè)對(duì)稱中心與它相鄰的一條對(duì)稱軸之間的距離為

(1)求函數(shù)f(x)的對(duì)稱軸方程及單調(diào)遞增區(qū)間;

(2)將函數(shù)y=f(x)的圖象向右平移個(gè)單位后,再將得到的圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的(縱坐標(biāo)不變),得到函數(shù)y=g(x)的圖象,當(dāng)x∈(,)時(shí),求函數(shù)g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)2017年招聘員工,其中五種崗位的應(yīng)聘人數(shù)錄用人數(shù)和錄用比例(精確到如下:

崗位

男性應(yīng)聘人數(shù)

男性錄用人數(shù)

男性錄用比例

女性應(yīng)聘人數(shù)

女性錄用人數(shù)

女性錄用比例

269

167

40

24

40

12

202

62

177

57

184

59

44

26

38

22

3

2

3

2

總計(jì)

533

264

467

169

(Ⅰ)從表中所有應(yīng)聘人員中隨機(jī)選擇1人,試估計(jì)此人被錄用的概率;

從應(yīng)聘崗位的6人中隨機(jī)選擇2人.記為這2人中被錄用的人數(shù),求的分布列和數(shù)學(xué)期望;

表中各崗位的男性、女性錄用比例都接近(二者之差的絕對(duì)值不大),但男性的總錄用比例卻明顯高于女性的總錄用比例.研究發(fā)現(xiàn),若只考慮其中某四種崗位,則男性、女性的總錄用比例也接近,請(qǐng)寫出這四種崗位.(只需寫出結(jié)論

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在四棱錐中,平面⊥平面, ,

(Ⅰ)求證: ⊥平面;

(Ⅱ)求證:

(Ⅲ)若點(diǎn)在棱上,且平面,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某幼兒園雛鷹班的生活老師統(tǒng)計(jì)2018年上半年每個(gè)月的20日的晝夜溫差,和患感冒的小朋友人數(shù)(/人)的數(shù)據(jù)如下:

溫差

患感冒人數(shù)

8

11

14

20

23

26

其中,.

(Ⅰ)請(qǐng)用相關(guān)系數(shù)加以說(shuō)明是否可用線性回歸模型擬合的關(guān)系;

(Ⅱ)建立關(guān)于的回歸方程(精確到),預(yù)測(cè)當(dāng)晝夜溫差升高時(shí)患感冒的小朋友的人數(shù)會(huì)有什么變化?(人數(shù)精確到整數(shù))

參考數(shù)據(jù):.參考公式:相關(guān)系數(shù):,回歸直線方程是, ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖象所過(guò)的定點(diǎn)為,光線沿直線射入,遇直線后反射,且反射光線所在的直線經(jīng)過(guò)點(diǎn),求的值和的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】樹(shù)立和踐行“綠水青山就是金山銀山,堅(jiān)持人與自然和諧共生”的理念越來(lái)越深入人心,已形成了全民自覺(jué)參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站推出了關(guān)于生態(tài)文明建設(shè)進(jìn)展情況的調(diào)查,大量的統(tǒng)計(jì)數(shù)據(jù)表明,參與調(diào)查者中關(guān)注此問(wèn)題的約占80%.現(xiàn)從參與調(diào)查的人群中隨機(jī)選出人,并將這人按年齡分組:第1,第2,第3,第4 ,第5,得到的頻率分布直方圖如圖所示

(1) 求的值

(2)現(xiàn)在要從年齡較小的第1,2,3組中用分層抽樣的方法抽取人,再?gòu)倪@人中隨機(jī)抽取人進(jìn)行問(wèn)卷調(diào)查,求在第1組已被抽到人的前提下,第3組被抽到人的概率;

(3)若從所有參與調(diào)查的人中任意選出人,記關(guān)注“生態(tài)文明”的人數(shù)為,求的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線=1(a>0,b>0)的右焦點(diǎn)為F,P,Q為雙曲線上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),若=0,且∠POF<,則該雙曲線的離心率的取值范圍為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)有悠久的金石文化,印信是金石文化的代表之一.印信的形狀多為長(zhǎng)方體、正方體或圓柱體,但南北朝時(shí)期的官員獨(dú)孤信的印信形狀是半正多面體(圖1.半正多面體是由兩種或兩種以上的正多邊形圍成的多面體.半正多面體體現(xiàn)了數(shù)學(xué)的對(duì)稱美.圖2是一個(gè)棱數(shù)為48的半正多面體,它的所有頂點(diǎn)都在同一個(gè)正方體的表面上,且此正方體的棱長(zhǎng)為1.則該半正多面體共有________個(gè)面,其棱長(zhǎng)為_________

查看答案和解析>>

同步練習(xí)冊(cè)答案