13.已知函數(shù)f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=log2(x+1),則f(-3)=(  )
A.2B.-2C.1D.-1

分析 根據(jù)函數(shù)奇偶性的性質(zhì)進(jìn)行轉(zhuǎn)化求解即可.

解答 解:∵函數(shù)f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=log2(x+1),
∴f(-3)=-f(3)=-log2(3+1)=-log24=-2,
故選:B

點(diǎn)評(píng) 本題主要考查函數(shù)值的計(jì)算,根據(jù)函數(shù)奇偶性的性質(zhì)進(jìn)行轉(zhuǎn)化求解是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.對(duì)于各數(shù)互不相等的正整數(shù)數(shù)組(i1,i2,i3,…,in)(n是不小于3的正整數(shù)),若對(duì)任意的p,q∈{1,2,3,…,n},當(dāng)p<q時(shí),有ip>iq,則稱ip,iq是該數(shù)組的一個(gè)“逆序”,一個(gè)數(shù)組中所有“逆序”的個(gè)數(shù)稱為該數(shù)組的“逆序”數(shù),如數(shù)組(2,3,1)的逆序數(shù)等于2.
(1)則數(shù)組(4,2,3,1)的逆序數(shù)等于5.
(2)若數(shù)組(i1,i2,i3,…,in)的逆序數(shù)為n,則數(shù)組(in,in-1,…,i1)的逆序數(shù)為$\frac{{n}^{2}-3n}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在一個(gè)盒子中有分別標(biāo)有數(shù)字1,2,3,4的4張卡片,現(xiàn)從中一次取出2張卡片,則取到的卡片上的數(shù)字之和為5的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖所示,在四面體中,若直線EF和GH相交,則它們的交點(diǎn)一定( 。
A.在直線DB上B.在直線AB上C.在直線CB上D.都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,$\overrightarrow{m}$=(cos$\frac{C}{2}$,sin$\frac{C}{2}}$),$\overrightarrow{n}$=(cos$\frac{C}{2}$,-sin$\frac{C}{2}}$),且m和n的夾角為$\frac{π}{3}$.
(1)求角C;
(2)若c=$\sqrt{7}$,且△ABC的面積為$\frac{3\sqrt{3}}{2}$,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)y=lg(1-x)+lg(1+x)是( 。
A.奇函數(shù),且在(0,1)上是增函數(shù)B.奇函數(shù),且在(0,1)上是減函數(shù)
C.偶函數(shù),且在(0,1)上是增函數(shù)D.偶函數(shù),且在(0,1)上是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.求圓心在直線x-3y=0上,與y軸相切,且被直線x-y=0截得的弦長(zhǎng)為2$\sqrt{7}$的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.為了得到函數(shù)y=sin(2x+$\frac{π}{3}$)的圖象,只需將函數(shù)y=sinx的圖象上所有的點(diǎn)(  )
A.橫坐標(biāo)伸長(zhǎng)到原來的2倍,再向左平行移動(dòng)$\frac{π}{3}$個(gè)單位長(zhǎng)度
B.橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍,再向左平行移動(dòng)$\frac{π}{3}$個(gè)單位長(zhǎng)度
C.橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍,再向左平行移動(dòng)$\frac{π}{6}$個(gè)單位長(zhǎng)度
D.橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍,再向右平行移動(dòng)$\frac{π}{6}$個(gè)單位長(zhǎng)度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若直線l:ax+by=0與圓C:(x-2)2+(y+2)2=8相交,則直線l的傾斜角不等于( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

同步練習(xí)冊(cè)答案