1.如圖所示,在四面體中,若直線EF和GH相交,則它們的交點一定( 。
A.在直線DB上B.在直線AB上C.在直線CB上D.都不對

分析 直線EF和GH相交,設(shè)交點為M,運用公理2,由此能判斷EF與HG的交點在直線BD上.

解答 解:直線EF和GH相交,設(shè)交點為M,
∵EF?平面ABD,HG?平面CBD,
∴M∈平面ABD,且M∈平面CBD,
∵平面ABD∩平面BCD=BD,
∴M∈BD,
∴EF與HG的交點在直線BD上.
故選:A.

點評 本題考查兩直線的交點在直線上的判斷,是基礎(chǔ)題,解題時要認真審題,注意平面的基本性質(zhì)及推論的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)m∈R,若函數(shù)f(x)=(m+1)x${\;}^{\frac{2}{3}}$+mx+1是偶函數(shù),則f(x)的單調(diào)遞增區(qū)間是[0,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.曲線y=x2 與直線y=x 所圍成的封閉圖形的面積為( 。
A.1B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某公司為了解用戶對其產(chǎn)品的滿意度,從A,B兩地區(qū)分別隨機調(diào)查了40個用戶,根據(jù)用戶對產(chǎn)品的滿意度評分,得到A地區(qū)用戶滿意度評分的頻率分布直方圖和B地區(qū)用戶滿意度評分的所有數(shù)據(jù).
B地區(qū)用戶滿意度評分:92,60,69,70,76,82,70,85,72,87,67,50,91,96,70,82,94,85,75,59,74,89,77,88,78,67,79,94,78,65,64,73,60,75,86,65,90,84,74,80
(1)完成B地區(qū)用戶滿意度評分的頻率分布表并作出頻率分布直方圖;
B地區(qū)用戶滿意度評分的頻率分布表
滿意度評分分組[50,60)[60,70)[70,80)[80,90)[90,100)
頻數(shù)
頻率

(2)通過直方圖比較兩地區(qū)滿意度評分的平均值及分散程度(不要求計算出具體值,給出結(jié)論即可);
(3)根據(jù)用戶滿意度評分,將用戶的滿意度分為三個等級:
滿意度評分低于70分70分到89分不低于90分
滿意度等級不滿意滿意非常滿意
利用樣本近似估計總體的思想方法,估計哪個地區(qū)用戶的滿意度等級為不滿意的概率大?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求下列函數(shù)的解析式.
(1)已知f(x)=x2+2x,求f(2x+1);
(2)已知f($\sqrt{x}$-1)=x+2$\sqrt{x}$,求f(x);
(3)已知f(x)-2f($\frac{1}{x}$)=3x+2,求f(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在△ABC中,若A=$\frac{π}{3}$,b=16,此三角形面積S=220$\sqrt{3}$,則a的值是( 。
A.$20\sqrt{6}$B.75C.51D.49

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)是奇函數(shù),當(dāng)x>0時,f(x)=log2(x+1),則f(-3)=( 。
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=x3-ax2+4的零點小于3個,則a的取值范圍是( 。
A.(-∞,0]B.(-∞,1]C.(-∞,2]D.(-∞,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)f(x)=Asin(ωx+φ)的圖象如圖所示,其中A>0,ω>0,|φ|<$\frac{π}{2}$,則下列關(guān)于函數(shù)f(x)的說法中正確的是( 。
A.在(-$\frac{3π}{2}$,-$\frac{5π}{6}$)上單調(diào)遞減B.φ=-$\frac{π}{6}$
C.最小正周期是πD.對稱軸方程是x=$\frac{π}{3}$+2kπ (k∈Z)

查看答案和解析>>

同步練習(xí)冊答案