【題目】如圖1,四邊形是邊長為2的菱形,,為的中點,以為折痕將折起到的位置,使得平面平面,如圖2.
(1)證明:平面平面;
(2)求點到平面的距離.
【答案】(1)證明見解析(2)
【解析】
(1)由題意可證得,,所以平面,則平面平面可證;
(2)解法一:利用等體積法由可求出點到平面的距離;解法二:由條件知點到平面的距離等于點到平面的距離,過點作的垂線,垂足,證明平面,計算出即可.
解法一:(1)依題意知,因為,所以.
又平面平面,平面平面,平面,
所以平面.
又平面,
所以.
由已知,是等邊三角形,且為的中點,所以.
因為,所以.
又,所以平面.
又平面,所以平面平面.
(2)在中,,,所以.
由(1)知,平面,且,
所以三棱錐的體積.
在中,,,得,
由(1)知,平面,所以,
所以,
設(shè)點到平面的距離,
則三棱錐的體積,得.
解法二:(1)同解法一;
(2)因為,平面,平面,
所以平面.
所以點到平面的距離等于點到平面的距離.
過點作的垂線,垂足,即.
由(1)知,平面平面,平面平面,平面,
所以平面,即為點到平面的距離.
由(1)知,,
在中,,,得.
又,所以.
所以點到平面的距離為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中國,不僅是購物,而且從共享單車到醫(yī)院掛號再到公共繳費,日常生活中幾乎全部領(lǐng)域都支持手機支付.出門不帶現(xiàn)金的人數(shù)正在迅速增加。中國人民大學(xué)和法國調(diào)查公司益普索合作,調(diào)查了騰訊服務(wù)的6000名用戶,從中隨機抽取了60名,統(tǒng)計他們出門隨身攜帶現(xiàn)金(單位:元)如莖葉圖如示,規(guī)定:隨身攜帶的現(xiàn)金在100元以下(不含100元)的為“手機支付族”,其他為“非手機支付族”.
(1)根據(jù)上述樣本數(shù)據(jù),將列聯(lián)表補充完整,并判斷有多大的把握認(rèn)為“手機支付族”與“性別”有關(guān)?
(2)用樣本估計總體,若從騰訊服務(wù)的用戶中隨機抽取3位女性用戶,這3位用戶中“手機支付族”的人數(shù)為,求隨機變量的期望和方差;
(3)某商場為了推廣手機支付,特推出兩種優(yōu)惠方案,方案一:手機支付消費每滿1000元可直減100元;方案二:手機支付消費每滿1000元可抽獎2次,每次中獎的概率同為,且每次抽獎互不影響,中獎一次打9折,中獎兩次打8.5折.如果你打算用手機支付購買某樣價值1200元的商品,請從實際付款金額的數(shù)學(xué)期望的角度分析,選擇哪種優(yōu)惠方案更劃算?
附:
| 0.050 | 0.010 | 0.001 |
| 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)設(shè),若對任意的,恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地舉行水上運動會,如圖,岸邊有兩點,,小船從點以千米/小時的速度沿方向勻速直線行駛,同一時刻運動員出發(fā),經(jīng)過小時與小船相遇.(水流速度忽略不計)
(1)若,,運動員從處出發(fā)游泳勻速直線追趕,為保證在1小時內(nèi)(含1小時)能與小船相遇,試求運動員游泳速度的最小值;
(2)若運動員先從處沿射線方向在岸邊跑步勻速行進小時后,再游泳勻速直線追趕小船.已知運動員在岸邊跑步的速度為4千米小時,在水中游泳的速度為2千米小時,試求小船在能與運動員相遇的條件下的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面為菱形,底面,.
(1)求證:平面;
(2)若直線與平面所成的角為,求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)的定義域為,如果存在非零常數(shù),對于任意,都有,則稱函數(shù)是“似周期函數(shù)”,非零常數(shù)為函數(shù)的“似周期”.現(xiàn)有下面四個關(guān)于“似周期函數(shù)”的命題:
①如果“似周期函數(shù)”的“似周期”為,那么它是周期為2的周期函數(shù);
②函數(shù)是“似周期函數(shù)”;
③如果函數(shù)是“似周期函數(shù)”,那么“或”.
以上正確結(jié)論的個數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的左、右焦點分別為,,左頂點為,離心率為,點是橢圓上的動點,的面積的最大值為.
(1)求橢圓的方程;
(2)設(shè)經(jīng)過點的直線與橢圓相交于不同的兩點,,線段的中垂線為.若直線與直線相交于點,與直線相交于點,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓:的離心率為,點分別為橢圓與坐標(biāo)軸的交點,且.過軸上定點的直線與橢圓交于,兩點,點為線段的中點.
(1)求橢圓的方程;
(2)求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地方政府召開全面展開新舊動能轉(zhuǎn)換重大工程動員大會,動員各方力量,迅速全面展開新舊動能轉(zhuǎn)換重大工程.某企業(yè)響應(yīng)號召,對現(xiàn)有設(shè)備進行改造,為了分析設(shè)備改造前后的效果,現(xiàn)從設(shè)備改造前、后生產(chǎn)的大量產(chǎn)品中各抽取了200件作為樣本,檢測一項質(zhì)量指標(biāo)值.若該項質(zhì)量指標(biāo)值落在內(nèi)的產(chǎn)品視為合格品,否則為不合格品.如圖所示的是設(shè)備改造前樣本的頻率分布直方圖.
(1)若設(shè)備改造后樣本的該項質(zhì)量指標(biāo)值服從正態(tài)分布,求改造后樣本中不合格品的件數(shù);
(2)完成下面2×2列聯(lián)表,并判斷是否有99%的把握認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量標(biāo)值與設(shè)備改造有關(guān).
0 | 設(shè)備改造前 | 設(shè)備改造后 | 合計 |
合格品件數(shù) | |||
不合格品件數(shù) | |||
合計 |
附參考公式和數(shù)據(jù):
若,則,.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com