9.在△ABC中,角A,B,C的對邊分別為a,b,c,btanB+btanA=-2ctanB,且a=8,△ABC的面積為$4\sqrt{3}$,則b+c的值為$4\sqrt{5}$.

分析 由正弦定理和三角函數(shù)公式化簡已知式子可得cosA的值,由余弦定理可求64=(b+c)2-bc,利用三角形面積公式可求bc=16,聯(lián)立即可得解b+c的值.

解答 解:∵在△ABC中btanB+btanA=-2ctanB,
∴由正弦定理可得sinB(tanA+tanB)=-2sinCtanB,
∴sinB(tanA+tanB)=-2sinC•$\frac{sinB}{cosB}$,
∴cosB(tanA+tanB)=-2sinC,
∴cosB($\frac{sinA}{cosA}$+$\frac{sinB}{cosB}$)=-2sinC,
∴cosB•$\frac{sinAcosB+cosAsinB}{cosAcosB}$=-2sinC,
∴cosB•$\frac{sin(A+B)}{cosAcosB}$=$\frac{sinC}{cosA}$=-2sinC,
解得cosA=-$\frac{1}{2}$,A=$\frac{2π}{3}$;
∵a=8,由余弦定理可得:64=b2+c2+bc=(b+c)2-bc,①
∵△ABC的面積為$4\sqrt{3}$=$\frac{1}{2}$bcsinA=$\frac{1}{2}×\frac{\sqrt{3}}{2}$bc,可得:bc=16,②
∴聯(lián)立①②可得:b+c=4$\sqrt{5}$.
故答案為:4$\sqrt{5}$.

點評 本題考查正、余弦定理解三角形,涉及同角三角函數(shù)基本關(guān)系和三角形的面積公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在三棱錐S-ABC中,∠ACB=90°,SA⊥平面ABC,SA=2,AC=BC=1,則異面直線SB與AC所成角的余弦值是( 。
A.$\frac{\sqrt{6}}{3}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知$\overrightarrow{a}$=(1,0),$\overrightarrow$=(0,1),若向量$\overrightarrow{c}$滿足|$\overrightarrow{c}$-$\overrightarrow{a}$-$\overrightarrow$|=2,則|$\overrightarrow{c}$|的最大值為2+$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)=lnx-ax(a∈R).
(1)若曲線y=f(x)存在一條切線與直線y=x平行,求a的取值范圍;
(2)當(dāng)0<a<2時,若f(x)在[a,2]上的最大值為-$\frac{1}{2}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.為迎接中共十九大,某校舉辦了“祖國,你好”詩歌朗誦比賽.該校高三年級準(zhǔn)備從包括甲、乙、丙在內(nèi)的7名學(xué)生中選派4名學(xué)生參加,要求甲、乙、丙這3名學(xué)生中至少有1人參加,且當(dāng)這 3名學(xué)生都參加時,甲和乙的朗誦順序不能相鄰,那么選派的4名學(xué)生不同的朗誦順序的種數(shù)為( 。
A.720B.768C.810D.816

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=4+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=4cosθ,直線l與圓C交于A,B兩點.
(1)求圓C的直角坐標(biāo)方程及弦AB的長;
(2)動點P在圓C上(不與A,B重合),試求△ABP的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知球O是正三棱錐(底面為正三角形,頂點在底面的射影為底面中心)A-BCD的外接球,BC=3,$AB=2\sqrt{3}$,點E在線段BD上,且BD=3BE,過點E作圓O的截面,則所得截面圓面積的取值范圍是( 。
A.[π,4π]B.[2π,4π]C.[3π,4π]D.(0,4π]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(Ⅰ)求函數(shù)f(x)=$\frac{{|{3x+2}|-|{1-2x}|}}{{|{x+3}|}}$的最大值M.
(Ⅱ)若實數(shù)a,b,c滿足a2+b2≤c≤M,證明:2(a+b+c)+1≥0,并說明取等條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知實數(shù)a,b,c滿足a2+b=lna,則(a-c)2+(b+c-2)2的最小值為( 。
A.2$\sqrt{2}$B.8C.$\sqrt{2}$D.2

查看答案和解析>>

同步練習(xí)冊答案