【題目】“勾股定理”在西方被稱為“畢達哥拉斯定理”,三國時期吳國的數(shù)學家趙爽在《周髀算經(jīng)》中注釋了其理論證明,其基本思想是圖形經(jīng)過割補后面積不變.即通過如圖所示的“弦圖”,將勻股定理表述為:“勾股各自乘,并之,為弦實,開方除之,即弦”(其中分別為勾股弦);證明方法敘述為:“按弦圖,又可以勾股相乘為朱實二,倍之為朱實四,以勾股之差自相乘為中黃實,加差實,亦成弦實”,即,化簡得.現(xiàn)已知,向外圍大正方形區(qū)域內(nèi)隨機地投擲一枚飛鏢,飛鏢落在中間小正方形內(nèi)的概率是( )

A. B. C. D.

【答案】A

【解析】

根據(jù)幾何概率的求法:一次飛鏢扎在中間小正方形區(qū)域(含邊線)的概率就是陰影區(qū)域的面積與總面積的比值.

由題意可知外圍大正方形邊長為

中間小正方形邊長為,

故所求概率為.

故選A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形,一個數(shù)學意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng),分形幾何學不僅讓人們感悟到科學與藝術的融合,數(shù)學與藝術審美的統(tǒng)一,而且還有其深刻的科學方法論意義,如圖,由波蘭數(shù)學家謝爾賓斯基1915年提出的謝爾賓斯基三角形就屬于一種分形,具體作法是取一個實心三角形,沿三角形的三邊中點連線.將它分成4個小三角形,去掉中間的那一個小三角形后,對其余3個小三角形重復上述過程逐次得到各個圖形,若記圖①三角形的面積為,則第n個圖中陰影部分的面積為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用分期付款的方式購買某家用電器一件,價格為1 150元,購買當天先付150元,以后每月這一天還款一次,每次還款數(shù)額相同,20個月還清,月利率為1%,按復利計算.若交付150元后的第一個月開始算分期付款的第一個月,全部欠款付清后,請問買這件家電實際付款多少元?每月還款多少元?(最后結果保留4個有效數(shù)字)

參考數(shù)據(jù):(1+1%)19=1.208,(1+1%)20=1.220,(1+1%)21=1.232.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年,南昌市召開了全球VR產(chǎn)業(yè)大會,為了增強對青少年VR知識的普及,某中學舉行了一次普及VR知識講座,并從參加講座的男生中隨機抽取了50人,女生中隨機抽取了70人參加VR知識測試,成績分成優(yōu)秀和非優(yōu)秀兩類,統(tǒng)計兩類成績?nèi)藬?shù)得到如下的列聯(lián)表:

優(yōu)秀

非優(yōu)秀

總計

男生

a

35

50

女生

30

d

70

總計

45

75

120

(1)確定a,d的值;

(2)試判斷能否有90%的把握認為VR知識的測試成績優(yōu)秀與否與性別有關;

(3)為了宣傳普及VR知識,從該校測試成績獲得優(yōu)秀的同學中按性別采用分層抽樣的方法,隨機選出6名組成宣傳普及小組.現(xiàn)從這6人中隨機抽取2名到校外宣傳,求“到校外宣傳的2名同學中至少有1名是男生”的概率.

附:

P(K2≥k0)

0.25

0.15

0.10

0.05

0.025

0.010

k0

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的右焦點為,上頂點為,直線的斜率為,且原點到直線的距離為.

(1)求橢圓的標準方程;

(2)若不經(jīng)過點的直線與橢圓交于兩點,且與圓相切.試探究的周長是否為定值,若是,求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知

1若展開式中第5項,第6項與第7項的二項式系數(shù)成等差數(shù)列,求展開式中二項式系數(shù)最大項

的系數(shù);

2若展開式前三項的二項式系數(shù)和等于79,求展開式中系數(shù)最大的項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018年8月18日,舉世矚目的第18屆亞運會在印尼首都雅加達舉行,為了豐富亞運會志愿者的業(yè)余生活,同時鼓勵更多的有志青年加入志愿者行列,大會主辦方?jīng)Q定對150名志愿者組織一次有關體育運動的知識競賽(滿分120分)并計劃對成績前15名的志愿者進行獎勵,現(xiàn)將所有志愿者的競賽成績制成頻率分布直方圖,如圖所示,若第三組與第五組的頻數(shù)之和是第二組的頻數(shù)的3倍,試回答以下問題:

(1)求圖中的值;

(2)求志愿者知識競賽的平均成績;

(3)從受獎勵的15人中按成績利用分層抽樣抽取5人,再從抽取的5人中,隨機抽取2人在主會場服務,求抽取的這2人中其中一人成績在分的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】復旦大學附屬華山醫(yī)院感染科主任醫(yī)師張文宏在接受媒體采訪時談到:通過救治研究發(fā)現(xiàn),目前對于新冠肺炎最有用的特效藥還是免疫力.而人的免疫力與體質(zhì)息息相關,一般來講,體質(zhì)好,免疫力就強.復學已有一段時間,某醫(yī)院到學校調(diào)查高二學生的體質(zhì)健康情況,隨機抽取12名高二學生進行體質(zhì)健康測試,測試成績(百分制)如下:65,78,90,86,52,87,72,8687,98,8886.根據(jù)此年齡段學生體質(zhì)健康標準,成績不低于80的為優(yōu)良.

1)將頻率視為概率,根據(jù)樣本估計總體的思想,在該學校全體高二學生中任選3人進行體質(zhì)健康測試,求至少有1人成績是優(yōu)良的概率;

2)從抽取的12人中隨機選取3人,記表示成績優(yōu)良的人數(shù),求的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知三棱錐的底面為正三角形,頂點在底面上的射影為底面的中心,,分別是棱,的中點,且,若側棱,則三棱錐的外接球的表面積是(

A. B. C. D.

查看答案和解析>>

同步練習冊答案