精英家教網 > 高中數學 > 題目詳情

【題目】設向量 =(1,﹣2), =(a,﹣1), =(﹣b,0),其中O為坐標原點,a>0,b>0,若A、B、C三點共線,則 的最小值為

【答案】8
【解析】解:向量 =(1,﹣2), =(a,﹣1), =(﹣b,0),其中O為坐標原點,a>0,b>0, ∴ = =(a﹣1,1), = =(﹣b﹣1,2),
∵A、B、C三點共線,
,

解得2a+b=1,
=( )(2a+b)=2+2+ ≥4+2 =8,當且僅當a= ,b= ,取等號,
的最小值為8,
所以答案是:8
【考點精析】本題主要考查了基本不等式的相關知識點,需要掌握基本不等式:,(當且僅當時取到等號);變形公式:才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知m、n是兩條不同的直線,α、β是兩個不同的平面,給出下列命題: ①若α⊥β,m∥α,則m⊥β;
②若m⊥α,n⊥β,且m⊥n,則α⊥β;
③若m⊥β,m∥α,則α⊥β;
④若m∥α,n∥β,且m∥n,則α∥β.
其中正確命題的序號是(
A.①④
B.②③
C.②④
D.①③

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將函數 圖象上所有點的橫坐標縮短為原來的 ,縱坐標不變,再向右平移 個單位長度,得到函數y=g(x)的圖象,則下列說法正確的是(
A.函數g(x)的一條對稱軸是
B.函數g(x)的一個對稱中心是
C.函數g(x)的一條對稱軸是
D.函數g(x)的一個對稱中心是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在某單位的職工食堂中,食堂每天以3元/個的價格從面包店購進面包,然后以5元/個的價格出售.如果當天賣不完,剩下的面包以1元/個的價格賣給飼料加工廠.根據以往統(tǒng)計資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進了90個面包,以x(單位:個,60≤x≤110)表示面包的需求量,T(單位:元)表示利潤.
(Ⅰ)求T關于x的函數解析式;
(Ⅱ)根據直方圖估計利潤T不少于100元的概率;
(Ⅲ)在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中間值的概率(例如:若需求量x∈[60,70),則取x=65,且x=65的概率等于需求量落入[60,70)的頻率),求T的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】給出下列命題:
①存在實數α使
②直線 是函數y=sinx圖象的一條對稱軸.
③y=cos(cosx)(x∈R)的值域是[cos1,1].
④若α,β都是第一象限角,且α>β,則tanα>tanβ.
其中正確命題的題號為( )
A.①②
B.②③
C.③④
D.①④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某地要建造一個邊長為2(單位:km)的正方形市民休閑公園OABC,將其中的區(qū)域ODC開挖成一個池塘,如圖建立平面直角坐標系后,點D的坐標為(1,2),曲線OD是函數y=ax2圖象的一部分,對邊OA上一點M在區(qū)域OABD內作一次函數y=kx+b(k>0)的圖象,與線段DB交于點N(點N不與點D重合),且線段MN與曲線OD有且只有一個公共點P,四邊形MABN為綠化風景區(qū):
(1)求證:b=﹣ ;
(2)設點P的橫坐標為t,①用t表示M、N兩點坐標;②將四邊形MABN的面積S表示成關于t的函數S=S(t),并求S的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=9x﹣2a3x+3:
(1)若a=1,x∈[0,1]時,求f(x)的值域;
(2)當x∈[﹣1,1]時,求f(x)的最小值h(a);
(3)是否存在實數m、n,同時滿足下列條件:①n>m>3;②當h(a)的定義域為[m,n]時,其值域為[m2 , n2],若存在,求出m、n的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知四面體ABCD的頂點都在同一個球的球面上,BC= ,BD=4,且滿足BC⊥BD,AC⊥BC,AD⊥BD.若該三棱錐的體積為 ,則該球的球面面積為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知圓C:(x﹣2)2+(y﹣1)2=1,點P為直線x+2y﹣9=0上一動點,過點P向圓C引兩條切線PA,PB,其中A,B為切點,則 的取值范圍為

查看答案和解析>>

同步練習冊答案