【題目】銷售甲、乙兩種商品所得利潤分別是P(單位:萬元)和Q(單位:萬元),它們與投入資金t(單位:萬元)的關(guān)系有經(jīng)驗公式P= t,Q= .今將3萬元資金投入經(jīng)營甲、乙兩種商品,其中對甲種商品投資x(單位:萬元),
(1)試建立總利潤y(單位:萬元)關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)對甲種商品投資x(單位:萬元)為多少時?總利潤y(單位:萬元)值最大.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)為選拔選手參加“中國漢字聽寫大會”,某中學(xué)舉行了一次“漢字聽寫大賽”活動.為了了解本次競賽學(xué)生的成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為)進(jìn)行統(tǒng)計.按照, , , , 的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在, 的數(shù)據(jù)).
(1)求樣本容量和頻率分布直方圖中的、的值;
(2)在選取的樣本中,從競賽成績在80分以上(含80分)的學(xué)生中隨機(jī)抽取2名學(xué)生參加“中國漢字聽寫大會”,求所抽取的2名學(xué)生中至少有一人得分在內(nèi)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|a﹣1≤x≤2a+3},B={x|﹣2≤x≤4},全集U=R
(1)當(dāng)a=2時,求A∪B和(RA)∩B;
(2)若A∩B=A,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓()的離心率是,過點的動直線與橢圓相交于, 兩點,當(dāng)直線平行于軸時,直線被橢圓截得的線段長為.
(1)求橢圓的方程;
(2)當(dāng)時,求直線的方程;
(3)記橢圓的右頂點為,點()在橢圓上,直線交軸于點,點與點關(guān)于軸對稱,直線交軸于點.問: 軸上是否存在點,使得(為坐標(biāo)原點)?若存在,求點坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: ,雙曲線: ,若以的長軸為直徑的圓與的一條漸近線交于A、B兩點,且橢圓與該漸近線的兩交點將線段AB三等分,則的離心率是( )
A. B. 3 C. D. 5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,BA=BD=,AD=2,PA=PD=,E,F(xiàn)分別是棱AD,PC的中點.
(1)證明:EF∥平面PAB;
(2)若二面角P-AD-B為60°.
①證明:平面PBC⊥平面ABCD;
②求直線EF與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的奇函數(shù)f(x),當(dāng)x∈(0,+∞)時的解析式為f(x)=﹣x2+4x﹣3.
(1)求這個函數(shù)在R上的解析式;
(2)作出f(x)的圖象,并根據(jù)圖象直接寫出函數(shù)f(x)的單調(diào)區(qū)間.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com