【題目】如圖,四棱錐P-ABCD的底面ABCD是平行四邊形,BA=BD=,AD=2,PA=PD=,E,F(xiàn)分別是棱AD,PC的中點(diǎn).

(1)證明:EF平面PAB;

(2)若二面角P-AD-B為60°

證明:平面PBC平面ABCD;

求直線EF與平面PBC所成角的正弦值.

【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析

【解析】

試題分析:(1)要證明平面,可以先證明平面,利用線面平行的判定定理,即可證明平面;(2)要證明平面平面,可用面面垂直的判定定理,即只需證明平面即可;平面,所以為直線與平面所成的角,及已知,得為直角,即可計(jì)算的長(zhǎng)度,在中,即計(jì)算直線與平面所成的角的正弦值.

試題解析:(1)證明:如圖,取PB中點(diǎn)M,連接MF,AM

因?yàn)镕為PC中點(diǎn),故MFBC且MF=BC由已知有BCAD,BC=AD

又由于E為AD中點(diǎn),因而MFAE且MF=AE,故四邊形AMFE為平行四邊形,

所以EFAM又AM平面PAB,而EF平面PAB,所以EF平面PAB

(2)證明:如圖,連接PE,BE

因?yàn)镻A=PD,BA=BD,而E為AD中點(diǎn),故PEAD,BEAD,

所以PEB為二面角P-AD-B的平面角.

PAD中,由PA=PD=,AD=2,可解得PE=2

ABD中,由BA=BD=,AD=2,可解得BE=1

PEB中,PE=2,BE=1,PEB=60°,由余弦定理,可解得PB=,

從而PBE=90°,即BEPB

又BCAD,BEAD,從而B(niǎo)EBC,因此BE平面PBC

又BE平面ABCD,所以平面PBC平面ABCD

連接BF知,BE平面PBC,所以EFB為直線EF與平面PBC所成的角.

由PB=及已知,得ABP為直角.

而MB=PB=,可得AM=,故EF=

又BE=1,故在RtEBF中,sinEFB=

所以直線EF與平面PBC所成角的正弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:方程表示焦點(diǎn)在x軸上的橢圓;命題q:雙曲線的離心率e.若命題“pq”為真命題,“pq”為假命題,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】銷(xiāo)售甲、乙兩種商品所得利潤(rùn)分別是P(單位:萬(wàn)元)和Q(單位:萬(wàn)元),它們與投入資金t(單位:萬(wàn)元)的關(guān)系有經(jīng)驗(yàn)公式P= t,Q= .今將3萬(wàn)元資金投入經(jīng)營(yíng)甲、乙兩種商品,其中對(duì)甲種商品投資x(單位:萬(wàn)元),
(1)試建立總利潤(rùn)y(單位:萬(wàn)元)關(guān)于x的函數(shù)關(guān)系式;
(2)當(dāng)對(duì)甲種商品投資x(單位:萬(wàn)元)為多少時(shí)?總利潤(rùn)y(單位:萬(wàn)元)值最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合A={x| >0},集合B={x|y=lg(﹣x2+3x+28)},集合C={x|m+1≤x≤2m﹣1}.
(1)求(RA)∩B;
(2)若B∪C=B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)場(chǎng)計(jì)劃種植某種新作物,為此對(duì)這種作物的兩個(gè)品種分別稱(chēng)為品種甲和品種乙進(jìn)行田間試驗(yàn)選取兩大塊地,每大塊地分成小塊地,在總共小塊地中,隨機(jī)選小塊地種植品種甲,另外小塊地種植品種乙

1假設(shè),求第一大塊地都種植品種甲的概率;

2試驗(yàn)時(shí)每大塊地分成小塊,即,試驗(yàn)結(jié)束后得到品種甲和品種乙在各小塊地上的每公頃產(chǎn)量單位:kg/hm2如下表:

分別求品種甲和品種乙的每公頃產(chǎn)量的樣本平均數(shù)和樣本方差;根據(jù)試驗(yàn)結(jié)果,你認(rèn)為應(yīng)該種植哪一品種?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=( x的圖象與函數(shù)g(x)的圖象關(guān)于直線y=x對(duì)稱(chēng),令h(x)=g(1﹣|x|),則關(guān)于h(x)有下列命題:
①h(x)的圖象關(guān)于原點(diǎn)對(duì)稱(chēng);
②h(x)為偶函數(shù);
③h(x)的最小值為0;
④h(x)在(0,1)上為減函數(shù).
其中正確命題的序號(hào)為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工程設(shè)備租賃公司為了調(diào)查A,B兩種挖掘機(jī)的出租情況,現(xiàn)隨機(jī)抽取了這兩種挖掘機(jī)各100臺(tái),分別統(tǒng)計(jì)了每臺(tái)挖掘機(jī)在一個(gè)星期內(nèi)的出租天數(shù),統(tǒng)計(jì)數(shù)據(jù)如下表:


(I)根據(jù)這個(gè)星期的統(tǒng)計(jì)數(shù)據(jù),將頻率視為概率,求該公司一臺(tái)A型挖掘機(jī),一臺(tái)B型挖掘機(jī)一周內(nèi)合計(jì)出租天數(shù)恰好為4天的概率;

(II)如果A,B兩種挖掘機(jī)每臺(tái)每天出租獲得的利潤(rùn)相同,該公司需要從A,B兩種挖掘機(jī)中購(gòu)買(mǎi)一臺(tái),請(qǐng)你根據(jù)所學(xué)的統(tǒng)計(jì)知識(shí),給出建議應(yīng)該購(gòu)買(mǎi)哪一種類(lèi)型,并說(shuō)明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)有相同的極值點(diǎn).

(I)求函數(shù)的解析式;

(II)證明:不等式(其中e為自然對(duì)數(shù)的底數(shù));

(III)不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓方程為,雙曲線的兩條漸近線分別為, ,過(guò)橢圓的右焦點(diǎn)作直線,使,又交于點(diǎn),設(shè)直線與橢圓的兩個(gè)交點(diǎn)由上至下依次為, . 

(1)若所成的銳角為,且雙曲線的焦距為4,求橢圓的方程;

(2)求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案