(本大題共12分)
如圖  為正方體,一只青蛙開始在頂點A處,它每次可隨意跳到相鄰三頂點之一,若在五次內(nèi)跳到點,則停止跳動;若5次內(nèi)不能跳到點,跳完五次也停止跳動,求:

(1)5次以內(nèi)能到點的跳法有多少種?
(2)從開始到停止,可能出現(xiàn)的跳法有多少種?
解:(1)如果不回跳,那么跳三次可到達點,第一跳有3種;第二跳有2種;第三跳有1種,共有種。
(2)由條件青蛙的跳法只可能出現(xiàn)兩種情況,
其一,跳三次到達點,有6種跳法,
其二,跳五次停止(前三次不到點),有,
故共有6+189=195種不同的跳法。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,四面體ABCD中,O,E分別為BD,BC的中點,CA=CB=CD=BD=2,AB=AD=

(1)求證:AO⊥平面BCD;
(2)求點E到平面ACD的距離.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在直三棱柱ABC—ABC中,分別為棱AC、AB上的動點(不包括端點),若則線段DE長度的取值范圍為
A.    B.   C.     D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過空間一點與已知平面垂直的直線有(  )
A.0條B.1條C.0條或1條D.無數(shù)條

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.(本題滿分12分)
如圖,垂直于矩形所在的平面,,,分別是、的中點.

(1)求證:平面;
(2)求證:平面平面
(3)求四面體的體積

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在正方體ABCD—A1B1C1D1中,點M、N分別在AB1、BC1上,且,則下列結(jié)論①;②;③MN//平面A1B1C1D1;④中,正確命題的個數(shù)是                (   )
A.4B.3 C.2D.1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,為多面體,平面與平面垂直,點在線段上,,△,△,△都是正三角形。
(Ⅰ)證明直線;
(2)求棱錐F—OBED的體積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題


.四面體的外接球球心在上,且,,在外接球面上兩點間的球面距離是     。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

( (本小題滿分12分)
如圖,在長方體中,
E、F分別是棱BC, 上的點,CF=AB=2CE,.

(1)證明AF⊥平面;
(2)求平面與平面FED所成的角的余弦值.

查看答案和解析>>

同步練習冊答案