【題目】某蛋糕店制作并銷(xiāo)售一款蛋糕,制作一個(gè)蛋糕成本3元,且以8元的價(jià)格出售,若當(dāng)天賣(mài)不完,剩下的則無(wú)償捐獻(xiàn)給飼料加工廠。根據(jù)以往100天的資料統(tǒng)計(jì),得到如下需求量表。該蛋糕店一天制作了這款蛋糕個(gè),以(單位:個(gè),)表示當(dāng)天的市場(chǎng)需求量,(單位:元)表示當(dāng)天出售這款蛋糕獲得的利潤(rùn).

需求量/個(gè)

天數(shù)

15

25

30

20

10

(1)當(dāng)時(shí),若時(shí)獲得的利潤(rùn)為,時(shí)獲得的利潤(rùn)為,試比較的大小;

(2)當(dāng)時(shí),根據(jù)上表,從利潤(rùn)不少于570元的天數(shù)中,按需求量分層抽樣抽取6天.

(i)求此時(shí)利潤(rùn)關(guān)于市場(chǎng)需求量的函數(shù)解析式,并求這6天中利潤(rùn)為650元的天數(shù);

(ii)再?gòu)倪@6天中抽取3天做進(jìn)一步分析,設(shè)這3天中利潤(rùn)為650元的天數(shù)為,求隨機(jī)變量的分布列及數(shù)學(xué)期望.

【答案】(1) .(2) (i)3; (ii)見(jiàn)解析.

【解析】

(1)求出,再比較的大;(2)(i)先求出利潤(rùn),再求出需求量,所以利潤(rùn)不少于570元時(shí)共有60天,再利用分層抽樣求出

這6天中利潤(rùn)為650元的天數(shù);(ii)由題意可知,再求出隨機(jī)變量的分布列及數(shù)學(xué)期望.

(1)時(shí),元;時(shí),元,

;

(2)(i)當(dāng)時(shí),利潤(rùn),

當(dāng)時(shí),即,即,

,所以利潤(rùn)不少于570元時(shí),需求量,共有60天,

按分層抽樣抽取,則這6天中利潤(rùn)為650元的天數(shù)為.

(ii)由題意可知,

其中,

.

的分布列為

0

1

2

3

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)圓的圓心為,直線(xiàn)過(guò)點(diǎn)且與軸不重合,交圓兩點(diǎn),過(guò)點(diǎn)的平行線(xiàn)交于點(diǎn).

(1)求的值;

(2)設(shè)點(diǎn)的軌跡為曲線(xiàn),直線(xiàn)與曲線(xiàn)相交于,兩點(diǎn),與直線(xiàn)相交于點(diǎn),試問(wèn)在橢圓上是否存在一定點(diǎn),使得,成等差數(shù)列(其中,,分別指直線(xiàn),,的斜率).若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(卷號(hào))2040818101747712

(題號(hào))2050752239689728

(題文)

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知直線(xiàn)的參數(shù)方程為為參數(shù)),曲線(xiàn)C的極坐標(biāo)方程為.

(1)求曲線(xiàn)的直角坐標(biāo)方程和直線(xiàn)的普通方程;

(2)設(shè)直線(xiàn)與曲線(xiàn)交于兩點(diǎn),點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)當(dāng)時(shí), 取得極值的值;

(Ⅱ)當(dāng)函數(shù)有兩個(gè)極值點(diǎn)時(shí),總有 成立的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)=2cosωx)(ω>0)滿(mǎn)足:f)=f),且在區(qū)間(,)內(nèi)有最大值但沒(méi)有最小值,給出下列四個(gè)命題:P1在[0,]上單調(diào)遞減;P2的最小正周期是4π;P3的圖象關(guān)于直線(xiàn)x對(duì)稱(chēng);P4的圖象關(guān)于點(diǎn)(,0)對(duì)稱(chēng).其中的真命題是( )

A.P1,P2B.P2,P4C.P1,P3D.P3,P4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是圓O的直徑,點(diǎn)C是圓O上異于A,B的點(diǎn),直線(xiàn)PC⊥平面ABC,E,F分別是PA,PC的中點(diǎn).

1)記平面BEF與平面ABC的交線(xiàn)為l,試判斷直線(xiàn)l與平面PAC的位置關(guān)系,并加以證明;

2)設(shè)(1)中的直線(xiàn)l與圓O的另一個(gè)交點(diǎn)為D,且點(diǎn)Q滿(mǎn)足.記直線(xiàn)PQ與平面ABC所成的角為θ,異面直線(xiàn)PQEF所成的角為α,二面角E﹣l﹣C的大小為β.求證:sinθ=sinαsinβ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校組織高一、高二年級(jí)學(xué)生進(jìn)行了“紀(jì)念建國(guó)70周年”的知識(shí)競(jìng)賽.從這兩個(gè)年級(jí)各隨機(jī)抽取了40名學(xué)生,對(duì)其成績(jī)進(jìn)行分析,得到了高一年級(jí)成績(jī)的頻率分布直方圖和高二年級(jí)成績(jī)的頻數(shù)分布表.

(Ⅰ)若成績(jī)不低于80分為“達(dá)標(biāo)”,估計(jì)高一年級(jí)知識(shí)競(jìng)賽的達(dá)標(biāo)率;

(Ⅱ)在抽取的學(xué)生中,從成績(jī)?yōu)閇95,100]的學(xué)生中隨機(jī)選取2名學(xué)生,代表學(xué)校外出參加比賽,求這2名學(xué)生來(lái)自于同一年級(jí)的概率;

(Ⅲ)記高一、高二兩個(gè)年級(jí)知識(shí)競(jìng)賽的平均分分別為,試估計(jì)的大小關(guān)系.(只需寫(xiě)出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線(xiàn)C1的參數(shù)方程為,(a為參數(shù))。以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)C2的極坐標(biāo)方程為,將C2逆時(shí)針旋轉(zhuǎn)以后得到曲線(xiàn)C3.

1)寫(xiě)出C1C3的極坐標(biāo)方程;

2)設(shè)C2C3分別交曲線(xiàn)C1A、BC、D四點(diǎn),求四邊形ACBD面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,左、右焦點(diǎn)為,點(diǎn)在橢圓上,且點(diǎn)關(guān)于原點(diǎn)對(duì)稱(chēng),直線(xiàn)的斜率的乘積為.

(1)求橢圓的方程;

(2)已知直線(xiàn)經(jīng)過(guò)點(diǎn),且與橢圓交于不同的兩點(diǎn),若,判斷直線(xiàn)的斜率是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案