19.設(shè)an=-n2+9n+10,則數(shù)列{an}前n項和最大值n的值為( 。
A.4B.5C.9或10D.4或5

分析 由題意可得Sn≥Sn+1,解出不等式根據(jù)項的符號可作出判斷

解答 解:解:an=-n2+9n+10=-(n-10)(n+1),
∵{an}的前n項和Sn有最大值,
∴Sn≥Sn+1,得an+1≤0,即-[(n+1)-10][(n+1)+1]≤0,
解得n≥9,
易得a8=18,a9=10,a10=0,a11=-12,則S9=S10最大,此時n=9或10.
故選C.

點評 本題考查數(shù)列的通項公式的求法,考查數(shù)列的前n項和的最大值的求法,解題時要注意配方法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.直線l經(jīng)過點P(3,4),它的傾斜角是直線y=$\sqrt{3}$x+$\sqrt{3}$的傾斜角的2倍,求直線l的點斜式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)f(x)=$\frac{{x}^{2}+1}{x}$的奇偶性為( 。
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.既不是奇函數(shù)又不是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列.
(Ⅰ)求數(shù)列{an},的通項公式;
(Ⅱ)設(shè)數(shù)列{bn},滿足bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求證:b1+b2+b3+…+bn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知圓x2+y2=16,直線l:y=x+b.圓上至少有三個點到直線l的距離等于1,則b的取值范圍是-3$\sqrt{2}$≤b≤3$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.?dāng)?shù)列1,1,2,3,x,8,13,21,…中的x值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.算法流程圖如圖所示,其輸出結(jié)果是127.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖所示的流程圖的功能是( 。
A.輸出a,b,c的最大值B.輸出a,b,c的最小值
C.將a,b,c從大到小排列D.將a,b,c從小到大排列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,矩形ABCD中,AB=2BC=4,E為邊AB的中點,將△ADE沿直線DE翻轉(zhuǎn)成△A1DE.若M為線段A1C的中點,則在△ADE翻轉(zhuǎn)過程中:
①|(zhì)BM|是定值;      
②點M在圓上運動;
③一定存在某個位置,使DE⊥A1C;
④一定存在某個位置,使MB∥平面A1DE.
其中正確的命題是( 。
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

同步練習(xí)冊答案