4.?dāng)?shù)列1,1,2,3,x,8,13,21,…中的x值為5.

分析 根據(jù)數(shù)列的前幾項(xiàng)觀察得出:an+2=an+1+an,n≥1,即可求解

解答 解:∵數(shù)列1,1,2,3,5,8,x,21,…
∴可以觀察得出:an+2=an+1+an,n≥1,
即x=2+3=5;
故答案為:5

點(diǎn)評(píng) 本題考查了觀察法求解數(shù)列的遞推關(guān)系式,屬于基礎(chǔ)題目,注意觀察相鄰的項(xiàng)的關(guān)系式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知曲線 f(x)=(x+a)lnx(a∈R)在點(diǎn)(1,f(1))處的切線與直線x+y+1=0垂直.
(1)求a的值;
(2)若?x∈[1,+∞),f(x)≤m(x2-1)恒成立,求實(shí)數(shù)m的取值范圍;
(3)求證:lnn+$\frac{1}{2}+\frac{1}{2n}≤1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n},n∈{N_+}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.若函數(shù)y=sin2x+acos2x的圖象關(guān)于直線x=-$\frac{π}{8}$對(duì)稱,則a=( 。
A.$-2-2\sqrt{2}$B.$-2+2\sqrt{2}$C.$2\sqrt{2}$D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.兩圓x2+y2-6x+16y-48=0與x2+y2+4x-8y-44=0的公切線條數(shù)為(  )
A.4條B.3條C.2條D.1條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)an=-n2+9n+10,則數(shù)列{an}前n項(xiàng)和最大值n的值為( 。
A.4B.5C.9或10D.4或5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.若復(fù)數(shù)(x2-1)+(x+1)i為純虛數(shù),則實(shí)數(shù)x的值為( 。
A.1B.-1C.1或-1D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.某個(gè)體服裝店經(jīng)營(yíng)某種服裝,在某周內(nèi)獲利y(元)與該周每天銷售這種服裝件數(shù)x之間的一組數(shù)據(jù)關(guān)系如下表
x3456789
y66697381899091
(參考數(shù)值:$\sum_{i=1}^{7}$xiyi=3487,$\sum_{i=1}^{7}$xi2=280)
(1)求$\overline{x}$、$\overline{y}$
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程y=$\widehat$x+$\widehat{a}$;(精確到0.01)
(3)若該周內(nèi)某天銷售服裝20件,估計(jì)可獲利多少元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.試求二次函數(shù)f(x)=x2-2ax+4在區(qū)間[1,3]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知α,β∈(0,$\frac{π}{2}$),且$\frac{sinα}{α}$<$\frac{sinβ}{β}$,則下列結(jié)論正確的是( 。
A.α<βB.α+β>$\frac{π}{2}$C.α>βD.α+β<$\frac{π}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案