A. | $-2-2\sqrt{2}$ | B. | $-2+2\sqrt{2}$ | C. | $2\sqrt{2}$ | D. | -1 |
分析 利用輔助角公式將函數(shù)y化簡,圖象關(guān)于直線x=-$\frac{π}{8}$對稱,則x=-$\frac{π}{8}$時,函數(shù)取得最大值或最小值.可得答案.
解答 解:∵函數(shù)y=sin2x+acos2x=$\sqrt{{a}^{2}+1}$sin(2x+θ),
圖象關(guān)于直線x=-$\frac{π}{8}$對稱,則x=-$\frac{π}{8}$時,函數(shù)取得最大值或最小值.
即sin($-\frac{π}{4}$)+acos($\frac{π}{4}$)=$±\sqrt{{a}^{2}+1}$
得$\frac{\sqrt{2}}{2}(a-1)$=$±\sqrt{{a}^{2}+1}$
解得:a=-1.
故選D
點評 本題的考點是正弦型三角函數(shù),主要考查三角函數(shù)的輔角公式和正弦函數(shù)的對稱性問題,考查學(xué)生分析解決問題的能力.屬基礎(chǔ)題
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 奇函數(shù) | B. | 偶函數(shù) | ||
C. | 既是奇函數(shù)又是偶函數(shù) | D. | 既不是奇函數(shù)又不是偶函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2i∈P | B. | $\frac{2}{i}$∈P | C. | ($\sqrt{2}$i)2∈P | D. | $\frac{2}{{i}^{3}}$∈P |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 不全相等 | B. | 均不相等 | ||
C. | 都相等,且為$\frac{1}{40}$ | D. | 都相等,且為$\frac{25}{1006}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com