精英家教網 > 高中數學 > 題目詳情
9.如圖,矩形ABCD中,AB=2BC=4,E為邊AB的中點,將△ADE沿直線DE翻轉成△A1DE.若M為線段A1C的中點,則在△ADE翻轉過程中:
①|BM|是定值;      
②點M在圓上運動;
③一定存在某個位置,使DE⊥A1C;
④一定存在某個位置,使MB∥平面A1DE.
其中正確的命題是( 。
A.①②③B.①②④C.①③④D.②③④

分析 取CD中點F,連接MF,BF,則平面MBF∥平面A1DE,可得④正確;由余弦定理可得MB2=MF2+FB2-2MF•FB•cos∠MFB,所以MB是定值,M是在以B為圓心,MB為半徑的圓上,可得①②正確.A1C在平面ABCD中的射影為AC,AC與DE不垂直,可得③不正確

解答 解:取CD中點F,連接MF,BF,則MF∥DA1,BF∥DE,∴平面MBF∥平面A1DE,∴MB∥平面A1DE,故④正確

由∠A1DE=∠MFB,MF=$\frac{1}{2}$A1D=定值,FB=DE=定值,
由余弦定理可得MB2=MF2+FB2-2MF•FB•cos∠MFB,所以MB是定值,故①正確.
∵B是定點,∴M是在以B為圓心,MB為半徑的圓上,故②正確,
∵A1C在平面ABCD中的射影為AC,AC與DE不垂直,
∴存在某個位置,使DE⊥A1C不正確,故③不正確.
故選:B.

點評 本題以命題的真假判斷與應用為載體,考查了線面、面面平行與垂直的判定和性質定理及線面角、二面角的定義及求法,難度中檔.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

19.設an=-n2+9n+10,則數列{an}前n項和最大值n的值為( 。
A.4B.5C.9或10D.4或5

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

20.如圖,網格紙上正方形小格的邊長為1,圖中粗線畫出的是某幾何體的三視圖,則該幾何體的體積為$\frac{4}{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

17.已知函數y=f(x),x∈D,若存在常數C,對任意x1∈D,存在唯一的x2∈D,使得$\sqrt{f({x_1})•f({x_2})}=C$,則稱常數C是函數f(x)在D上的“湖中平均數”.若已知函數$f(x)={({\frac{1}{2}})^x},x∈[{0,2016}]$,則f(x)在[0,2016]上的“湖中平均數”是$(\frac{1}{2})^{1008}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.已知cos(π+α)=-$\frac{3}{5}$,α是第四象限角,那么sin(3π+α)的值是( 。
A.$\frac{3}{5}$B.-$\frac{4}{5}$C.$\frac{4}{5}$D.$±\frac{4}{5}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.已知α,β∈(0,$\frac{π}{2}$),且$\frac{sinα}{α}$<$\frac{sinβ}{β}$,則下列結論正確的是( 。
A.α<βB.α+β>$\frac{π}{2}$C.α>βD.α+β<$\frac{π}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.已知數列{an},{cn}滿足條件:${a_1}=1,{a_{n+1}}=2{a_n}+1,{c_n}=\frac{1}{(2n+1)(2n+3)}$.
(1)求證數列{an+1}是等比數列,并求數列{an}的通項公式;
(2)求數列{cn}的前n項和Tn,并求使得${a_m}>\frac{1}{T_n}$對任意n∈N+都成立的正整數m的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

18.函數y=$\sqrt{1-{3}^{x}}$的定義域是( 。
A.[0,+∞)B.(-∞,0]C.[1,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.如表是某商店每月某種商品的銷售額(用y表示,單位:萬元)與月份(t)的關系對照表.
月份(t)12345
銷售額(y)y1y2y3y4y5
其中$\overline{y}$=10,$\sum_{i=1}^{5}$tiyi=163.請建立y關于t的回歸方程(系數精確到0.01)并預測6月份這種商品的銷售額.
參考公式:回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$t+$\stackrel{∧}{a}$中斜率和截距的最小二乘估計公式分別為:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t}({y}_{i}-\overline{y}))}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{t}$.

查看答案和解析>>

同步練習冊答案