求證:y=|x|在點(diǎn)x=0處連續(xù),但在x=0處不可導(dǎo).

答案:
解析:

  證明:∵y=|x|=

  當(dāng)x從左端趨近于0時(shí),f(x)趨近于0,當(dāng)x從右端趨于0時(shí),f(x)也趨近于0,又f(x)=0,

  ∴f(x)=|x|在點(diǎn)x=0處連續(xù).

  又∵Δy=f(0+Δx)-f(0)=|Δ|,,

  當(dāng)Δx>0時(shí),=1;

  當(dāng)Δx<0時(shí),=-1,

  ∴Δx趨近于0時(shí),f(x)不可導(dǎo).

  故f(x)=|x|在x=0處連續(xù)但不可導(dǎo).

  思路分析:復(fù)習(xí)證明函數(shù)連續(xù)性的方法;鞏固“可導(dǎo)必連續(xù),連續(xù)不一定可導(dǎo)”的概念.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:成功之路·突破重點(diǎn)線·數(shù)學(xué)(學(xué)生用書) 題型:047

求證y=|x|在點(diǎn)x=0連續(xù),但在點(diǎn)x=0處不可導(dǎo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省十所名校高三第三次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知圓C:的半徑等于橢圓E:(a>b>0)的短半軸長,橢圓E的右焦點(diǎn)F在圓C內(nèi),且到直線l:y=x-的距離為,點(diǎn)M是直線l與圓C的公共點(diǎn),設(shè)直線l交橢圓E于不同的兩點(diǎn)A(x1,y1),B(x2,y2).

(Ⅰ)求橢圓E的方程;

(Ⅱ)求證:|AF|-|BF|=|BM|-|AM|.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省鄭州市高三第十三次調(diào)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知圓C:的半徑等于橢圓E:(a>b>0)的短半軸長,橢圓E的右焦點(diǎn)F在圓C內(nèi),且到直線l:y=x-的距離為,點(diǎn)M是直線l與圓C的公共點(diǎn),設(shè)直線l交橢圓E于不同的兩點(diǎn)A(x1,y1),(x2,y2).

(Ⅰ)求橢圓E的方程;

(Ⅱ)求證:|AF|-|BF|=|BM|-|AM|.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省、金陵中學(xué)、南京外國語學(xué)校高三三校聯(lián)考數(shù)學(xué)卷 題型:解答題

A.選修4-1:幾何證明選講

 

 
(本小題滿分10分)

如圖,設(shè)AB為⊙O的任一條不與直線l垂直的直徑,P是⊙O與l的公共點(diǎn),AC⊥l,BD⊥l,垂足分別為C,D,且PC=PD.求證:(1)l是⊙O的切線;(2)PB平分∠ABD.

B.選修4-2:矩陣與變換

(本小題滿分10分)

已知點(diǎn)A在變換:T:→=作用后,再繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°,得到點(diǎn)B.若點(diǎn)B坐標(biāo)為(-3,4),求點(diǎn)A的坐標(biāo).

C.選修4-4:坐標(biāo)系與參數(shù)方程

(本小題滿分10分)

求曲線C1:被直線l:y=x-所截得的線段長.

D.選修4-5:不等式選講

(本小題滿分10分)

已知a、b、c是正實(shí)數(shù),求證:≥.

 

 

查看答案和解析>>

同步練習(xí)冊答案