已知圓C:的半徑等于橢圓E:(a>b>0)的短半軸長(zhǎng),橢圓E的右焦點(diǎn)F在圓C內(nèi),且到直線l:y=x-的距離為,點(diǎn)M是直線l與圓C的公共點(diǎn),設(shè)直線l交橢圓E于不同的兩點(diǎn)A(x1,y1),(x2,y2).

(Ⅰ)求橢圓E的方程;

(Ⅱ)求證:|AF|-|BF|=|BM|-|AM|.

 

【答案】

(1)

(2)結(jié)合直線與圓的位置關(guān)系,以及橢圓的第二定義的運(yùn)用來(lái)證明。

【解析】

試題分析:解:(Ⅰ)設(shè)點(diǎn),則到直線的距離為

,即,                 (2分)

因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013071311421238557726/SYS201307131143097490488344_DA.files/image003.png">在圓內(nèi),所以,故;                 (4分)

因?yàn)閳A的半徑等于橢圓的短半軸長(zhǎng),所以

橢圓方程為.                         (6分)

(Ⅱ)因?yàn)閳A心到直線的距離為,所以直線與圓相切,是切點(diǎn),故

為直角三角形,所以

,可得,                    (7分)

,又,可得,        (9分)

所以,同理可得,            (11分)

所以,即.      (12分)

考點(diǎn):橢圓的方程以及定義

點(diǎn)評(píng):主要是考查了橢圓的方程的求解以及焦半徑公式的運(yùn)用,屬于中檔題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的圓心C在y軸上,且圓C與直線y=x+1相切,點(diǎn)A(-1,-2)在圓內(nèi),圓半徑等于2
2

(1)求圓的方程;
(2)求經(jīng)過(guò)點(diǎn)A的最短弦所在的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C以(3,-1)為圓心,5為半徑,過(guò)點(diǎn)S(0,4)作直線l與圓C交于A,B兩點(diǎn).
(1)若AB=8,求直線l的方程;
(2)當(dāng)直線l的斜率為-2時(shí),在l上求一點(diǎn)P,使P到圓C的切線長(zhǎng)等于PS;
(3)設(shè)AB的中點(diǎn)為N,試在平面上找一定點(diǎn)M,使MN的長(zhǎng)為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河南省十所名校高三第三次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知圓C:的半徑等于橢圓E:(a>b>0)的短半軸長(zhǎng),橢圓E的右焦點(diǎn)F在圓C內(nèi),且到直線l:y=x-的距離為,點(diǎn)M是直線l與圓C的公共點(diǎn),設(shè)直線l交橢圓E于不同的兩點(diǎn)A(x1,y1),B(x2,y2).

(Ⅰ)求橢圓E的方程;

(Ⅱ)求證:|AF|-|BF|=|BM|-|AM|.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河南省十所名校高三第三次聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知圓C:的半徑等于橢圓E:(a>b>0)的短半軸長(zhǎng),橢圓E的右焦點(diǎn)F在圓C內(nèi),且到直線l:y=x-的距離為,點(diǎn)M是直線l與圓C的公共點(diǎn),設(shè)直線l交橢圓E于不同的兩點(diǎn)A(x1,y1),B(x2,y2).

(Ⅰ)求橢圓E的方程;

(Ⅱ)求證:|AF|-|BF|=|BM|-|AM|.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案