已知圓C:的半徑等于橢圓E:(a>b>0)的短半軸長,橢圓E的右焦點F在圓C內(nèi),且到直線l:y=x-的距離為-,點M是直線l與圓C的公共點,設(shè)直線l交橢圓E于不同的兩點A(x1,y1),B(x2,y2).
(Ⅰ)求橢圓E的方程;
(Ⅱ)求證:|AF|-|BF|=|BM|-|AM|.
(Ⅰ);(Ⅱ)先把表示出來,得,同理,從而命題得證.
【解析】
試題分析:
(Ⅰ)先利用到直線的距離得,求出,再求出,從而得橢圓方程為;(Ⅱ)先利用為直角三角形,求出,又,可得,同理得,所以,同理可得,繼而得到.
試題解析:(Ⅰ)設(shè)點,則到直線的距離為
,即, (2分)
因為在圓內(nèi),所以,故; (4分)
因為圓的半徑等于橢圓的短半軸長,所以,
橢圓方程為. (6分)
(Ⅱ)因為圓心到直線的距離為,所以直線與圓相切,是切點,故為直角三角形,所以,
又,可得, (7分)
,又,可得, (9分)
所以,同理可得, (11分)
所以,即. (12分)
考點:直線與橢圓的位置關(guān)系的綜合應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省十所名校高三第三次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知圓C:的半徑等于橢圓E:(a>b>0)的短半軸長,橢圓E的右焦點F在圓C內(nèi),且到直線l:y=x-的距離為-,點M是直線l與圓C的公共點,設(shè)直線l交橢圓E于不同的兩點A(x1,y1),B(x2,y2).
(Ⅰ)求橢圓E的方程;
(Ⅱ)求證:|AF|-|BF|=|BM|-|AM|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省鄭州市高三第十三次調(diào)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知圓C:的半徑等于橢圓E:(a>b>0)的短半軸長,橢圓E的右焦點F在圓C內(nèi),且到直線l:y=x-的距離為-,點M是直線l與圓C的公共點,設(shè)直線l交橢圓E于不同的兩點A(x1,y1),(x2,y2).
(Ⅰ)求橢圓E的方程;
(Ⅱ)求證:|AF|-|BF|=|BM|-|AM|.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com