分析 由題意可知橢圓是焦點在x軸上的橢圓,利用橢圓定義得到|BF2|+|AF2|=8-|AB|,再由過橢圓焦點的弦中通徑的長最短,可知當AB垂直于x軸時|AB|最小,|AB|=$\frac{2^{2}}{a}$=b2,|BF2|+|AF2|=8-|AB|,由|BF2|+|AF2|的最大值等于7列式求b的值.
解答 解:由橢圓長軸長為4,則a=2,則0<b<2,
∵過F1的直線l交橢圓于A,B兩點,∴|BF2|+|AF2|+|BF1|+|AF1|=2a+2a=4a=8
∴|BF2|+|AF2|=8-|AB|.
當AB垂直x軸時|AB|最小,|BF2|+|AF2|值最大,
此時|AB|=$\frac{2^{2}}{a}$=b2,∴7=8-b2,
解得b=1.
故答案為:1.
點評 本題考查了直線與圓錐曲線的關系,考查了橢圓的定義,考查橢圓焦點的弦中通徑的長最短,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{2\sqrt{10}}}{5}$ | B. | $\frac{{\sqrt{10}}}{5}$ | C. | $\sqrt{2}$ | D. | $\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-1,+∞) | B. | (1,2] | C. | (1,+∞) | D. | [-1,2] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0對 | B. | 1對 | C. | 2對 | D. | 4對 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,$\sqrt{2}$) | B. | (1,2) | C. | ($\sqrt{2}$,+∞) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{4}{9}$ | C. | $\frac{5}{9}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com