16.在△ABC中,角A、B、C的對邊分別為a、b、c,2acosC+2ccosA=a+c.
(Ⅰ)若$\frac{sinA}{sinB}=\frac{3}{4}$,求$\frac{c}$的值;
(Ⅱ)若$C=\frac{2π}{3}$,且c-a=8,求△ABC的面積S.

分析 (Ⅰ)由題意,可利用正弦定理化簡,可得$\frac{c}$的值;
(Ⅱ)利用余弦定理求出b,a的值,即可求解△ABC的面積S.

解答 解:∵2acosC+2ccosA=a+c
由正弦定理:2sinAcosC+2sinCcosA=sinA+sinC
∴sinA+sinC=2sin(A+C)=2sin(π-B)=2sinB
∴a+c=2b…①.
(Ⅰ)∵$\frac{sinA}{sinB}=\frac{3}{4}$,
∴$\frac{a}=\frac{3}{4}$…②.
由①②得:$\frac{c}=\frac{5}{4}$.
(Ⅱ)∵c-a=8,a+c=2b.
∴b=a+4,c=a+8,
∵$C=\frac{2π}{3}$
由余弦定理得:${(a+8)^2}={a^2}+{(a+4)^2}-2a•(a+4)cos\frac{2π}{3}$,
解得:a=6.
∴b=10.
故得△ABC的面積$S=\frac{1}{2}absinC=\frac{1}{2}×6×10×\frac{{\sqrt{3}}}{2}=15\sqrt{3}$.

點評 本題考查三角形的正弦定理和余弦定理的運用,考查運算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{1+alnx}{x}$(a>0).
(Ⅰ)若函數(shù)f(x)在x=1處取得極值,且函數(shù)y=f(x)圖象上一點的切線l過原點,求l的方程;
(Ⅱ)討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=$\sqrt{3}$sinxcosx-cos2x-$\frac{1}{2}$.
(Ⅰ)求函數(shù)f(x)的對稱軸方程;
(Ⅱ)將函數(shù)f(x)的圖象上各點的縱坐標保持不變,橫坐標伸長為原來的2倍,然后再向左平移$\frac{π}{3}$個單位,得到函數(shù)g(x)的圖象.若a,b,c分別是△ABC三個內(nèi)角A,B,C的對邊,a=2,c=4,且g(B)=0,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=-x2+2lnx與g(x)=ax+$\frac{1}{x}$(a∈R)有相同的極值點.
(Ⅰ)求函數(shù)g(x)的解析式;
(Ⅱ)證明:不等式f(x)+2g(x)>$\frac{2}{{e}^{x}}$-x2+2x(其中e為自然對數(shù)的底數(shù));
(Ⅲ)不等式$\frac{f({x}_{1})-g({x}_{2})}{b-1}$≤1對任意x1,x2∈[$\frac{1}{e}$,3]恒成立,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知數(shù)列{ an}的前n項和為Sn,且滿足:a1=1,a2=2,Sn+1=an+2-an+1(n∈N*),則Sn=2n-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若復(fù)數(shù)$\frac{a+i}{1+2i}({a∈R})$為純虛數(shù),其中i為虛數(shù)單位,則a=( 。
A.2B.$\frac{1}{2}$C.-2D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的長軸長為4,左、右焦點分別為F1,F(xiàn)2,過F1的動直線l交C于A,B兩點,若|AF2|+|BF2|的最大值為7,則b的值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知等差數(shù)列{an}中,a1=1,且a1,a2,a4+2成等比數(shù)列.
(1)求數(shù)列{an}的通項公式及其前n項和Sn;
(2)設(shè)${b_n}={2^{{{({-1})}^n}{a_n}}}$,求數(shù)列{bn}的前2n項和T2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.在△ABC中,$2\overrightarrow{BD}=\overrightarrow{DC}$,AB=4,AD=AC=3,則BC=$\sqrt{21}$.

查看答案和解析>>

同步練習冊答案