(12分)如圖,等邊與直角梯形垂直,,,,.若分別為的中點(diǎn).(1)求的值; (2)求面與面所成的二面角大小.

(1) ;
(2)面SCD與面SAB所成的二面角大小為.

解析試題分析:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f8/5/gobak.png" style="vertical-align:middle;" />,然后再在中求值即可.
(2)利用空間向量法求二面角,要首先求出二面角兩個(gè)面的法向量然后轉(zhuǎn)化為兩個(gè)面的法向量的夾角求解.
(1)在正,面,
,
中, 
 (也可用坐標(biāo)計(jì)算)………6分
(2)建立如圖所示的直角坐標(biāo)系

,,
設(shè)面SCD的法向量為
,由
不妨設(shè),,,面SAB的法向量為

面SCD與面SAB所成的二面角大小為..………12分.
考點(diǎn):空間幾何體的線線,線面,面面垂直的判定與性質(zhì),向量的運(yùn)算,二面角.
點(diǎn)評:(1)本小題在進(jìn)行向量運(yùn)算時(shí)用到的公式:若M為BC的中點(diǎn),則.
(2)在利用空間向量求二面角時(shí)首先求出兩個(gè)面的法向量,同時(shí)要注意法向量的夾角與二面角可能相等也可能互補(bǔ),要注意判斷準(zhǔn)確.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)如圖所示,在三棱柱中,點(diǎn)為棱的中點(diǎn).

(1)求證:.
(2)若三棱柱為直三棱柱,且各棱長均為,求異面直線所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)如圖幾何體,是矩形,,
上的點(diǎn),且

(1)求證:;
(2)求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)如圖所示,已知四棱錐S—ABCD的底面ABCD是矩形,M、N分別是CD、SC的中點(diǎn),SA⊥底面ABCD,SA=AD=1,AB=.
(1)求證:MN⊥平面ABN;(2)求二面角A—BN—C的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分14分)
如圖, 在直三棱柱中,,
(1)求證:;
(2)問:是否在線段上存在一點(diǎn),使得平面
若存在,請證明;若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

本小題滿分14分)
如圖,在直三棱柱中,,,,點(diǎn)、分別是的中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)證明:平面平面;
(Ⅲ)求多面體A1B1C1BD的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖,在四棱錐中,底面是矩形,平面,,,點(diǎn)的中點(diǎn),中點(diǎn).

(1)求證:平面⊥平面
(2)求直線與平面所成的角的正弦值;
(3)求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
如圖,在四棱錐中,⊥平面,⊥平面,
,
(1)求證:平面ADE⊥平面ABE;
(2)求二面角A—EB—D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
如圖,已知正方體,是底對角線的交點(diǎn).
求證:(1);
(2 )
 

查看答案和解析>>

同步練習(xí)冊答案