【題目】如圖所示,三棱柱中,側(cè)棱垂直底面,∠ACB=90°,D的中點(diǎn),點(diǎn)PAB的中點(diǎn).

1)求證:平面;

2)求證:;

3)求三棱錐B-CDP的體積.

【答案】1)證明見(jiàn)解析(2)證明見(jiàn)解析(3

【解析】

1)連接,要證明線面平行,需證明線線平行,即轉(zhuǎn)化為證明;

2)先證明平面,再根據(jù)線面垂直的性質(zhì)定理和證明;

3)利用等體積轉(zhuǎn)化,求解.

1)證明:連接D,P分別是AB的中點(diǎn),∴

又:

2)∵AA1⊥平面ABC,.AA1BC

又∠ACB=90°∴BCAC,又AA1AC=A,∴BC⊥平面ACC1A1

BCAC1

AC1//DP,所以BCPD

3)過(guò)DDEBCBCE,則DE為三棱錐DBCP的高且為1,

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)討論函數(shù)的單調(diào)區(qū)間;

2)若恒成立,求實(shí)數(shù)的取值范圍;

3)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若、是兩個(gè)相交平面,則在下列命題中,真命題的序號(hào)為( )

若直線,則在平面內(nèi)一定不存在與直線平行的直線.

若直線,則在平面內(nèi)一定存在無(wú)數(shù)條直線與直線垂直.

若直線,則在平面內(nèi)不一定存在與直線垂直的直線.

若直線,則在平面內(nèi)一定存在與直線垂直的直線.

A. ①③ B. ②③ C. ②④ D. ①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中有云:“有木長(zhǎng)三丈,圍之八尺,葛生其下,纏木兩周,上與木齊,問(wèn)葛長(zhǎng)幾何?”意思為:圓木長(zhǎng)3丈,圓周為8尺,葛藤?gòu)膱A木的底部開(kāi)始向上生長(zhǎng),繞圓木兩周,剛好頂部與圓木平齊,問(wèn)葛藤最少長(zhǎng)幾尺(注:1丈即10尺)?該問(wèn)題的答案為34.若圓木長(zhǎng)為3尺,圓周為2尺,同樣繞圓木兩周剛好頂部與圓木平齊,那葛藤最少又是長(zhǎng)( )尺?

A.34B.5C.6D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了適應(yīng)高考改革,某中學(xué)推行“創(chuàng)新課堂”教學(xué).高一平行甲班采用“傳統(tǒng)教學(xué)”的教學(xué)方式授課,高一平行乙班采用“創(chuàng)新課堂”的教學(xué)方式授課,為了比較教學(xué)效果,期中考試后,分別從兩個(gè)班中各隨機(jī)抽取名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì)分析,結(jié)果如下表:(記成績(jī)不低于分者為“成績(jī)優(yōu)秀”)

分?jǐn)?shù)

甲班頻數(shù)

乙班頻數(shù)

(Ⅰ)由以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面的列聯(lián)表,并判斷是否有以上的把握認(rèn)為“成績(jī)優(yōu)秀與教學(xué)方式有關(guān)”?

甲班

乙班

總計(jì)

成績(jī)優(yōu)秀

成績(jī)不優(yōu)秀

總計(jì)

(Ⅱ)現(xiàn)從上述樣本“成績(jī)不優(yōu)秀”的學(xué)生中,抽取人進(jìn)行考核,記“成績(jī)不優(yōu)秀”的乙班人數(shù)為,求的分布列和期望.

參考公式:,其中

臨界值表

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,直線過(guò)原點(diǎn).

1)若直線與圓相切,求直線的方程;

2)若直線與圓交于,兩點(diǎn),當(dāng)的面積最大時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某電信公司為了加強(qiáng)新用5G技術(shù)的推廣使用,為該公司的用戶(hù)制定了一套5G月消費(fèi)返流量費(fèi)的套餐服務(wù)方案;當(dāng)月消費(fèi)金額不超過(guò)100元時(shí),按消費(fèi)金額的進(jìn)行返還;當(dāng)月消費(fèi)金額超過(guò)100元時(shí),除消費(fèi)金額中的100元仍按進(jìn)行返還外,若另超出100元的部分消費(fèi)金額為A元,則超過(guò)部分按進(jìn)行返還,記用戶(hù)當(dāng)月返還所得流量費(fèi)y(單位:),消費(fèi)金額x(單位:)

1)寫(xiě)出該公司用戶(hù)月返還所得流量費(fèi)的函數(shù)模型;

2)如果用戶(hù)小李當(dāng)月獲返還的流量費(fèi)是12元,那么他這個(gè)月的消費(fèi)金額是多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了釋放學(xué)生壓力,某校高三年級(jí)一班進(jìn)行了一個(gè)投籃游戲,其間甲、乙兩人輪流進(jìn)行籃球定點(diǎn)投籃比賽(每人各投一次為一輪).在相同的條件下,每輪甲乙兩人站在同一位置,甲先投,每人投一次籃,兩人有1人命中,命中者得1分,未命中者得-1分;兩人都命中或都未命中,兩人均得0.設(shè)甲每次投籃命中的概率為,乙每次投籃命中的概率為,且各次投籃互不影響.

1)經(jīng)過(guò)1輪投籃,記甲的得分為,求的分布列及期望;

2)用表示經(jīng)過(guò)第輪投籃后,甲的累計(jì)得分高于乙的累計(jì)得分的概率,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知點(diǎn)是以為底邊的等腰三角形,點(diǎn)在直線:上.

(1)求邊上的高所在直線的方程;

(2)求的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案