【題目】若、是兩個相交平面,則在下列命題中,真命題的序號為( )
①若直線,則在平面內(nèi)一定不存在與直線平行的直線.
②若直線,則在平面內(nèi)一定存在無數(shù)條直線與直線垂直.
③若直線,則在平面內(nèi)不一定存在與直線垂直的直線.
④若直線,則在平面內(nèi)一定存在與直線垂直的直線.
A. ①③ B. ②③ C. ②④ D. ①④
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】水培植物需要一種植物專用營養(yǎng)液,已知每投放(且)個單位的營養(yǎng)液,它在水中釋放的濃度 (克/升)隨著時間 (天)變化的函數(shù)關(guān)系式近似為,其中,若多次投放,則某一時刻水中的營養(yǎng)液濃度為每次投放的營養(yǎng)液在相應(yīng)時刻所釋放的濃度之和,根據(jù)經(jīng)驗,當(dāng)水中營養(yǎng)液的濃度不低于4(克/升)時,它才能有效.
(1)若只投放一次2個單位的營養(yǎng)液,則有效時間最多可能達(dá)到幾天?
(2)若先投放2個單位的營養(yǎng)液,3天后再投放個單位的營養(yǎng)液,要使接下來的2天中,營養(yǎng)液能夠持續(xù)有效,試求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列推理中屬于歸納推理且結(jié)論正確的是( )
A.由an=2n﹣1,求出S1=12 , S2=22 , S3=32 , …,推斷:數(shù)列{an}的前n項和Sn=n2
B.由f(x)=xcosx滿足f(﹣x)=﹣f(x)對?x∈R都成立,推斷:f(x)=xcosx為奇函數(shù)
C.由圓x2+y2=r2的面積S=πr2 , 推斷:橢圓 =1的面積S=πab
D.由(1+1)2>21 , (2+1)2>22 , (3+1)2>23 , …,推斷:對一切n∈N* , (n+1)2>2n
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 ,則導(dǎo)函數(shù)f′(x)是( )
A.僅有最小值的奇函數(shù)
B.既有最大值,又有最小值的偶函數(shù)
C.僅有最大值的偶函數(shù)
D.既有最大值,又有最小值的奇函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知如表為“五點(diǎn)法”繪制函數(shù)f(x)=Asin(ωx+φ)圖象時的五個關(guān)鍵點(diǎn)的坐標(biāo)(其中A>0,ω>0,|φ|<π)
x | ﹣ | ||||
f(x) | 0 | 2 | 0 | ﹣2 | 0 |
(Ⅰ)請寫出函數(shù)f(x)的最小正周期和解析式;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅲ)求函數(shù)f(x)在區(qū)間[0, ]上的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù)的導(dǎo)函數(shù)為.
⑴ 若直線與曲線恒相切于同一定點(diǎn),求的方程;
⑵ 若,求證:當(dāng)時, 恒成立;
⑶ 若當(dāng)時, 恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列中, ,前項和滿足().
⑴ 求數(shù)列的通項公式;
⑵ 記,求數(shù)列的前項和;
⑶ 是否存在整數(shù)對(其中, )滿足?若存在,求出所有的滿足題意的整數(shù)對;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】把函數(shù)y=sin(x﹣ )的圖象向左平移 個單位長度,再將圖象上所有點(diǎn)的橫坐標(biāo)縮短為原來的 倍(縱坐標(biāo)不變)得到函數(shù)f(x)的圖象. (Ⅰ)寫出函數(shù)f(x)的解析式;
(Ⅱ)若x∈[0, ]時,關(guān)于x的方程f(x)﹣m=0有兩個不等的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com