(12分)如圖,等邊與直角梯形垂直,,,
,.若分別為的中點.

(1)求的值; (2)求面與面所成的二面角大小.
(1) ;
(2)面SCD與面SAB所成的二面角大小為.

試題分析:(1)因為,然后再在中求值即可.
(2)利用空間向量法求二面角,要首先求出二面角兩個面的法向量然后轉化為兩個面的法向量的夾角求解.
(1)在正,面,
,
中, 
 (也可用坐標計算)………6分
(2)建立如圖所示的直角坐標系

,,
設面SCD的法向量為
,由
不妨設,,,面SAB的法向量為

面SCD與面SAB所成的二面角大小為.
點評:(1)本小題在進行向量運算時用到的公式:若M為BC的中點,則.
(2)在利用空間向量求二面角時首先求出兩個面的法向量,同時要注意法向量的夾角與二面角可能相等也可能互補,要注意判斷準確.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(10分)用斜二測畫法作出邊長為3cm、高4cm的矩形的直觀圖.并求出直觀圖的面積

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
下列三個圖中,左邊是一個正方體截去一個角后所得多面體的直觀圖。右邊兩個是正視圖和側視圖.

(1)請在正視圖的下方,按照畫三視圖的要求畫出該多面體的俯視圖(不要求敘述作圖過程);
(2)求該多面體的體積(尺寸如圖).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在空間四邊形中,分別是的中點。若,且所成的角為,則四邊形的面積為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列結論正確的是(   )
A.各個面都是三角形的幾何體是三棱錐
B.以三角形一條邊所在直線為旋轉軸,其余兩邊旋轉形成的曲面所圍成的幾何體叫圓錐
C.棱錐的側棱長與底面多邊形的邊長相等,則該棱錐可能是六棱錐
D.圓錐的頂點與底面圓周上的任意一點的連線都是母線

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在三棱柱中,已知平面ABC,,且此三棱柱的各頂點都在一個球面上,則球的體積為。.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

把正方形沿對角線折起,當以四點為頂點的三棱錐體積最大時,直線和平面所成的角的大小為(    )
A.90B.30C.60D.45

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

長方體ABCD—A1B1C1D1中,AA1=AB=2,AD=1, 點E、F、G分別是DD1、AB、CC1的中點,則異面直線A1E與GF所成的角是(   )

A.           B.          C.           D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知三棱柱的側棱與底面垂直,,,,分別是的中點,點在直線上,且;
(Ⅰ)證明:無論取何值,總有;
(Ⅱ)當取何值時,直線與平面所成的角最大?并求該角取最大值時的正切值;
(Ⅲ)是否存在點,使得平面與平面所成的二面角為30º,若存在,試確定點的位置,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案