在三棱柱中,已知平面ABC,,且此三棱柱的各頂點(diǎn)都在一個(gè)球面上,則球的體積為。.

試題分析:取邊中點(diǎn)M,取邊中點(diǎn)N,連接MN,取MN中點(diǎn)O,

點(diǎn)評(píng):本題的關(guān)鍵點(diǎn)在于確定球心的位置
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)
如圖,P-ABC是底面邊長(zhǎng)為1的正三棱錐,D、E、F分別為棱長(zhǎng)PA、PB、PC上的點(diǎn), 截面DEF∥底面ABC, 且棱臺(tái)DEF-ABC與棱錐P-ABC的棱長(zhǎng)和相等.(棱長(zhǎng)和是指多面體中所有棱的長(zhǎng)度之和)

(1)求證:P-ABC為正四面體;
(2)棱PA上是否存在一點(diǎn)M,使得BM與面ABC所成的角為45°?若存在,求出點(diǎn)M的位置;若不存在,請(qǐng)說(shuō)明理由。
(3)設(shè)棱臺(tái)DEF-ABC的體積為V=, 是否存在體積為V且各棱長(zhǎng)均相等的平行六面體,使得它與棱臺(tái)DEF-ABC有相同的棱長(zhǎng)和,并且該平行六面體的一條側(cè)棱與底面兩條棱所成的角均為60°? 若存在,請(qǐng)具體構(gòu)造出這樣的一個(gè)平行六面體,并給出證明;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)如圖,在四棱錐中,平面平面,為等邊三角形,底面為菱形,,的中點(diǎn),。
 
(1)求證:平面;
(2) 求四棱錐的體積
(3)在線段上是否存在點(diǎn),使平面;  若存在,求出的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知三棱錐的所有頂點(diǎn)都在球的球面上,是邊長(zhǎng)為的正三角形,為球的直徑,且,則此棱錐的體積為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若某幾何體的三視圖(單位:cm)如右圖所示,則該幾何體的體積為      cm2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

某圓柱的底面直徑為高為則它最多能放入半徑為的球      個(gè)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

正方體的內(nèi)切球,與各棱相切的球,外接球的體積之比為(     )
A.1:2:3B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)如圖,等邊與直角梯形垂直,,,
,.若分別為的中點(diǎn).

(1)求的值; (2)求面與面所成的二面角大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如右圖所示,正三棱錐中,分別是 的中點(diǎn),上任意一點(diǎn),則直線所成的角的大小是(  。
A.B.
C.D.隨點(diǎn)的變化而變化。

查看答案和解析>>

同步練習(xí)冊(cè)答案