精英家教網 > 高中數學 > 題目詳情

【題目】已知直線與雙曲線;

1)當為何值時,直線與雙曲線有一個交點;

2)直線與雙曲線交于、兩點且以為直徑的圓過坐標原點,求值。

【答案】(1)當時,直線與雙曲線有一個交點(2)

【解析】

1)根據直線與雙曲線的位置關系中直線與雙曲線有一個交點的情況,討論直線與雙曲線的漸近線平行與不平行,解出即可得到答案。

(2)聯(lián)立直線與雙曲線可得到,,直線與雙曲線交于、兩點且以為直徑的圓過坐標原點等價于,即,代入即可解出答案。

1)直線過定點,雙曲線漸近線方程為,

①當直線與雙曲線的漸近線平行時,只有一個交點,此時;

②當時,聯(lián)立得:

若直線與雙曲線只有一個交點,則,解得

所以,當時,直線與雙曲線有一個交點;

2)設點,,

聯(lián)立得:,

所以,

因為以為直徑的圓過坐標原點,所以,

所以

解得.滿足判別式大于0

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】過雙曲線的左焦點作圓的切線,切點為,延長交拋物線于點,若是線段的中點,則雙曲線的離心率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】據統(tǒng)計ABO血型具有民族和地區(qū)差異.在我國H省調查了30488人,四種血型的人數如下:

血型

A

B

O

AB

人數/

7704

10765

8970

3049

頻率

1)計算H省各種血型的頻率并填表(精確到0.001);

2)如果從H省任意調查一個人的血型,那么他是O型血的概率大約是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于函數fx),若fx0=x0,則稱x0fx)的不動點,若f[fx0]=x0,則稱x0fx)的穩(wěn)定點,函數fx)的不動點穩(wěn)定點的集合分別記為AB,即A={x|fx=x},B={x|f[fx]=x},那么:

1)函數gx=x2-2不動點______;

2)集合A與集合B的關系是______

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為迎接年北京冬季奧運會,普及冬奧知識,某校開展了“冰雪答題王”冬奧知識競賽活動.現(xiàn)從參加冬奧知識競賽活動的學生中隨機抽取了名學生,將他們的比賽成績(滿分為分)分為組:,,,,,得到如圖所示的頻率分布直方圖.

(Ⅰ)求的值;

(Ⅱ)記表示事件“從參加冬奧知識競賽活動的學生中隨機抽取一名學生,該學生的比賽成績不低于分”,估計的概率;

(Ⅲ)在抽取的名學生中,規(guī)定:比賽成績不低于分為“優(yōu)秀”,比賽成績低于分為“非優(yōu)秀”.請將下面的列聯(lián)表補充完整,并判斷是否有的把握認為“比賽成績是否優(yōu)秀與性別有關”?

優(yōu)秀

非優(yōu)秀

合計

男生

女生

合計

參考公式及數據:,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C以坐標軸為對稱軸,以坐標原點為對稱中心,橢圓的一個焦點為,點在橢圓上,

求橢圓C的方程.

斜率為k的直線l過點F且不與坐標軸垂直,直線l交橢圓于A、B兩點,線段AB的垂直平分線與x軸交于點G,求點G橫坐標的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,橢圓的中心為坐標原點,焦點軸上,且在拋物線的準線上,點是橢圓上的一個動點,面積的最大值為.

1)求橢圓的方程;

2)過焦點,作兩條平行直線分別交橢圓,,四個點.求四邊形面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知的三個頂點落在半徑為的球的表面上,三角形有一個角為且其對邊長為3,球心所在的平面的距離恰好等于半徑的一半,點為球面上任意一點,則三棱錐的體積的最大值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數.

(Ⅰ)若曲線在點處的切線與直線垂直,求單調遞減區(qū)間和極值(其中為自然對數的底數);

(Ⅱ)若對任意,恒成立.求的取值范圍.

查看答案和解析>>

同步練習冊答案