【題目】為迎接年北京冬季奧運會,普及冬奧知識,某校開展了“冰雪答題王”冬奧知識競賽活動.現(xiàn)從參加冬奧知識競賽活動的學生中隨機抽取了名學生,將他們的比賽成績(滿分為分)分為組:,,,,,得到如圖所示的頻率分布直方圖.

(Ⅰ)求的值;

(Ⅱ)記表示事件“從參加冬奧知識競賽活動的學生中隨機抽取一名學生,該學生的比賽成績不低于分”,估計的概率;

(Ⅲ)在抽取的名學生中,規(guī)定:比賽成績不低于分為“優(yōu)秀”,比賽成績低于分為“非優(yōu)秀”.請將下面的列聯(lián)表補充完整,并判斷是否有的把握認為“比賽成績是否優(yōu)秀與性別有關”?

優(yōu)秀

非優(yōu)秀

合計

男生

女生

合計

參考公式及數(shù)據:,

【答案】(Ⅰ)(Ⅱ) (Ⅲ)見解析

【解析】

)利用頻率分布直方圖小長方形的面積之和是1可得;

)由題意利用頻率近似概率可得;

)由題意填寫列聯(lián)表,計算觀測值,對照臨界值得出結論.

(Ⅰ)由題可得,

解得

(Ⅱ)由(Ⅰ)知

則比賽成績不低于分的頻率為,

故從參加冬奧知識競賽活動的學生中隨機抽取一名學生,該學生的比賽成績不低于分的概率約為

(Ⅲ)由(Ⅱ)知,在抽取的名學生中,比賽成績優(yōu)秀的有人,

由此可得完整的列聯(lián)表:

優(yōu)秀

非優(yōu)秀

合計

男生

女生

合計

所以的觀測值,

所以沒有的把握認為“比賽成績是否優(yōu)秀與性別有關”.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】針對時下的“抖音熱”,某校團委對“學生性別和喜歡抖音是否有關”作了一次調查,其中被調查的女生人數(shù)是男生人數(shù)的,男生喜歡抖音的人數(shù)占男生人數(shù)的,女生喜歡抖音的人數(shù)占女生人數(shù)若有95%的把握認為是否喜歡抖音和性別有關,則男生至少有( )人.

K2k0

0.050

0.010

k0

3.841

6.635

A. 12B. 6C. 10D. 18

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】新生嬰兒性別比是每100名女嬰對應的男嬰數(shù).通過抽樣調查得知,我國2014年、2015年出生的嬰兒性別比分別為115.88113.51.

1)分別估計我國2014年和2015年男嬰的出生率(新生兒中男嬰的比率,精確到0.001);

2)根據估計結果,你認為生男孩和生女孩是等可能的這個判斷可靠嗎?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一個試驗中,把一種血清注射到500只豚鼠體內,被注射前,這些豚鼠中150只有圓形細胞,250只有橢圓形細胞,100只有不規(guī)則形狀細胞;被注射后,沒有一個具有圓形細胞的豚鼠被感染,50個具有橢圓形細胞的豚鼠被感染,具有不規(guī)則形狀細胞的豚鼠全部被感染,根據試驗結果,估計具有下列類型的細胞的豚鼠被這種血清感染的概率;

1)圓形細胞;

2)橢圓形細胞;

3)不規(guī)則形狀細胞.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當時,求曲線經過原點的切線方程;

(Ⅱ)若在時,有恒成立,求的最小值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線與雙曲線;

1)當為何值時,直線與雙曲線有一個交點;

2)直線與雙曲線交于兩點且以為直徑的圓過坐標原點,求值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為實數(shù),函數(shù).

(1)若是函數(shù)的一個極值點,求實數(shù)的取值;

(2)設,若,使得成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知的三個頂點落在半徑為的球的表面上,三角形有一個角為且其對邊長為3,球心所在的平面的距離恰好等于半徑的一半,點為球面上任意一點,則三棱錐的體積的最大值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在貫徹中共中央國務院關于精準扶貧政策的過程中,某單位定點幫扶甲、乙兩個村各50戶貧困戶.為了做到精準幫扶,工作組對這100戶村民的年收入情況、勞動能力情況、子女受教育情況、危舊房情況、患病情況等進行調查,并把調查結果轉化為各戶的貧困指標,制成下圖,其中”表示甲村貧困戶,“”表示乙村貧困戶.

,則認定該戶為“絕對貧困戶”,若,則認定該戶為“相對貧困戶”,若,則認定該戶為“低收入戶”;

則認定該戶為“今年能脫貧戶”,否則為“今年不能脫貧戶”.

1)從甲村50戶中隨機選出一戶,求該戶為“今年不能脫貧的絕對貧困戶的概率;

2)若從所有“今年不能脫貧的非絕對貧困戶”中選3戶,用表示所選3戶中乙村的戶數(shù),求的分布列和數(shù)學期望

3)試比較這100戶中,甲、乙兩村指標的方差的大。ㄖ恍鑼懗鼋Y論).

查看答案和解析>>

同步練習冊答案