【題目】已知函數(shù),曲線在點(diǎn)處的切線為,若時(shí),有極值.

1)求的值;

2)求上的最大值和最小值.

【答案】: 1)由fx)=x3+ax2+bx+c,

f′(x)=3x2+2ax+b,

當(dāng)x=1時(shí),切線l的斜率為3,可得2a+b="0 " ①

當(dāng)x=時(shí),y=f(x)有極值,則f′=0,

可得4a+3b+4="0 " ②

①②解得a=2,b=-4.

由于切點(diǎn)的橫坐標(biāo)為x=1,∴f(1)=4.

∴1+a+b+c=4.∴c=5………………………………….6

2)由(1)可得f(x)=x3+2x2-4x+5,

∴f′(x)=3x2+4x-4,

f′(x)=0,x=-2,x=.

當(dāng)x變化時(shí),y,y′的取值及變化如下表:

x

-3

(-3,-2)

-2

(-2,)


(,1)

1



+

0

-

0

+


y

8

單調(diào)增遞

13

單調(diào)遞減


單調(diào)遞增

4

∴ y=f(x)[-31]上的最大值為13,最小值為…………………….14

【解析】試題分析:

(1)利用題意求得實(shí)數(shù)a,b,c的值可得函數(shù)f(x)的表達(dá)式為f(x)=x3+2x2-4x+5

(2)結(jié)合(1)的解析式和導(dǎo)函數(shù)研究原函數(shù)的性質(zhì)可得yf(x)在[-3,1]上的最大值為13,最小值為 .

試題解析:

(1)由f(x)=x3ax2bxc,

f′(x)=3x2+2axb,

當(dāng)x=1時(shí),切線l的斜率為3,可得2ab=0;①

當(dāng)x時(shí),yf(x)有極值,則f=0,

可得4a+3b+4=0.②

由①②解得a=2,b=-4,

又切點(diǎn)的橫坐標(biāo)為x=1,∴f(1)=4.

∴1+abc=4.∴c=5.

(2)由(1),得f(x)=x3+2x2-4x+5,

f′(x)=3x2+4x-4.

f′(x)=0,得x=-2或x,

f′(x)<0的解集為,即為f(x)的減區(qū)間.

[-3,-2)、是函數(shù)的增區(qū)間.

f(-3)=8,f(-2)=13,f,f(1)=4,

yf(x)在[-3,1]上的最大值為13,最小值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正三棱柱中,底面為正三角形,分別是棱的中點(diǎn),且.

)求證:;

)求證:;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)證明:函數(shù)是偶函數(shù);

(2)利用絕對(duì)值及分段函數(shù)知識(shí),將函數(shù)解析式寫成分段函數(shù)的形式,然后畫出函數(shù)圖像(草圖),并寫出函數(shù)的值域;

(3)在同一坐標(biāo)系中畫出直線,觀察圖像寫出不等式的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,有一塊半橢圓形鋼板,其長半軸為,短半軸為,計(jì)劃將此鋼板切割成等腰梯形的形狀,下底是半橢圓的短軸,上底的端點(diǎn)在橢圓上,記,梯形面積為

(Ⅰ)求面積關(guān)于變量的函數(shù)表達(dá)式,并寫出定義域;

(Ⅱ)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知p:指數(shù)函數(shù)f(x)=(2a-6)x在R上是單調(diào)減函數(shù);q:關(guān)于x的方程x2-3ax+2a2+1=0的兩根均大于3,若pq為真,pq為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】用長為18 m的鋼條圍成一個(gè)長方體形狀的框架,要求長方體的長與寬之比為2:1,問該長方體的長、寬、高各為多少時(shí),其體積最大?最大體積是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列命題,其中正確的序號(hào)是__________________(寫出所有正確命題的序號(hào))

①函數(shù)的圖像恒過定點(diǎn);

②已知集合,則映射中滿足的映射共有1個(gè);

③若函數(shù)的值域?yàn)?/span>R,則實(shí)數(shù)的取值范圍是;

④函數(shù)的圖像關(guān)于對(duì)稱的函數(shù)解析式為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x-1|+|x+1|(x∈R).

(1)證明:函數(shù)f(x)是偶函數(shù);

(2)利用絕對(duì)值及分段函數(shù)知識(shí),將函數(shù)解析式寫成分段函數(shù)的形式,然后畫出函數(shù)圖象;

(3)寫出函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)p:實(shí)數(shù)x滿足,其中,命題實(shí)數(shù)滿足

|x-3|≤1 .

(1)若為真,求實(shí)數(shù)的取值范圍;

(2)若的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案