分析 (1)4Sn=an2+2an+1可得4a1=a12+2a1+1,a1>0,解得a1.n≥2時,4an=4(Sn-Sn-1),再利用等差數(shù)列的通項公式即可得出.
(2)bn=$\frac{2}{{{a_n}•{a_{n+1}}}}$,利用“裂項求和”方法即可得出.
解答 解:(1)∵4Sn=an2+2an+1.
∴當n=1時,可得4a1=4S1=a12+2a1+1,
解得a1=1,
由4Sn=an2+2an+1得:
4Sn-an2-2an-1=0,①
則4Sn+1-an+12-2an+1-1=0,②
②-①得::4(Sn+1-Sn)-an+12-2an+1-1+an2+2an+1=0,
整理得:(an+1+an)(an+1-an-2)=0.
∵an>0,
∴an+1-an-2=0,即an+1-an=2.
∴數(shù)列{an}是首項為1,公差為2的等差數(shù)列.
則an=1+2(n-1)=2n-1.
(2)bn=$\frac{2}{{{a_n}•{a_{n+1}}}}$=$\frac{2}{(2n-1)(2n+1)}$=$\frac{1}{2n-1}$-$\frac{1}{2n+1}$,
則數(shù)列{bn}的前n項和為:1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$=1-$\frac{1}{2n+1}$=$\frac{2n}{2n+1}$.
點評 本題考查了遞推關(guān)系、“裂項求和”方法、等差數(shù)列的通項公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | f(x)=x-1,x∈R,g(x)=x-1,x∈N | B. | $f(x)=\frac{{{x^2}-4}}{x+2}$,g(x)=x-2 | ||
C. | f(x)=x,$g(x)={({\sqrt{x}})^2}$ | D. | f(x)=2x-1,g(t)=2t-1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com