11.等比數(shù)列{an}前n項和為Sn,a2=6,6a1+a3=30,則數(shù)列{an}的通項公式是an=3×3n-1或2×2n-1

分析 設出等比數(shù)列{an}的公比為q,利用a2表示出6a1+a3=30,求出q與a1的值,即可寫出通項公式an

解答 解:設等比數(shù)列{an}的公比為q,
∵a2=6,6a1+a3=30,
∴6×$\frac{6}{q}$+6q=30,
化簡得q2-5q+6=0,
解得q=2或q=3;
當q=2時,a1=3,通項公式為an=3×3n-1;
當q=3時,a1=2,通項公式為an=2×2n-1
故答案為:an=3×3n-1或2×2n-1

點評 本題考查了等比數(shù)列的通項公式與應用問題,是基礎題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

1.設全集U={1,2,3,4,5},集合A={2,3,5},集合B={1,2},則(∁UB)∩A={3,5}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.對于實數(shù)a,b,命題:若ab=0,則a=0的否定是( 。
A.若ab=0,則a≠0B.若a≠0,則ab≠0
C.存在實數(shù)a,b,使ab=0時a≠0D.任意實數(shù)a,b,若ab≠0,則a≠0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.設命題p:若|x|>2,則x<-2或x>2.那么p的逆否命題為若-2≤x≤2,則|x|≤2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知正項數(shù)列{an}前n項和為Sn,且4Sn=an2+2an+1.
(1)求數(shù)列{an}的通項公式;
(2)若bn=$\frac{2}{{{a_n}•{a_{n+1}}}}$,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.在△ABC中,角A,B,C所對的邊分別為a,b,c,若∠C=60°,b=2,c=2$\sqrt{3}$,則a=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.設△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若a2cosAsinB=b2sinAcosB,則△ABC的形狀為( 。
A.等腰直角三角形B.直角三角形
C.等腰三角形或直角三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知數(shù)列{an}的首項為7,且an=$\frac{1}{2}$an-1+3(n≥2),則a6=$\frac{193}{32}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.|2x-1|≥3的解集是(-∞,-1]∪[2,+∞).

查看答案和解析>>

同步練習冊答案