分析 (1)連結(jié)ME,證明ADEM為平行四邊形,從而得到AM∥DE,即可證明AM∥平面NED;
(2)取AB中點(diǎn)F,連結(jié)B1F,則B1F∥AM,AM與平面BCC1B1所成角即為B1F平面BCC1B1所成角,即可求出直線AM與平面BCC1B1所成角的正切值.
解答 (1)證明:連結(jié)ME----------(1分)
∵M(jìn)、E分別是A1B1、D1C1中點(diǎn)
∴A1D1∥ME,A1D1=ME
又∵A1D1∥AD,A1D1=AD
∴ME∥AD,ME=AD
故得平行四邊形ADEM-----------------------(4分)
∴AM∥DE
又∵DE?平面NED
AM?平面NED
∴AM∥平面NED-----------------------(6分)
(2)解:取AB中點(diǎn)F,連結(jié)B1F,則B1F∥AM
∴AM與平面BCC1B1所成角即為B1F平面BCC1B1所成角.
∵AB⊥平面BCC1B1
∴∠FB1B是直線AM與平面BCC1B1所成角---------------------------------(9分)
∵$BF=\frac{1}{2}AB=\frac{1}{2}B{B_1}$
∴$tan∠F{B_1}B=\frac{FB}{{B{B_1}}}=\frac{1}{2}$
故直線AM與平面BCC1B1所成角的正切值為$\frac{1}{2}$-------------------------(12分)
點(diǎn)評(píng) 本題考查證明線面平行的方法,求直線AM與平面BCC1B1所成角的正切值,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{6}}}{2}$ | B. | $\frac{{\sqrt{6}}}{4}$ | C. | $\frac{{\sqrt{2}}}{4}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | k | B. | -k | C. | 1-k | D. | 2-k |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com