已知橢圓
的離心率為
,其中左焦點
①求橢圓
的方程
②若直線
與橢圓
交于不同的兩點
,且線段
的中
點
關于直線
的對稱點在圓
上,求
的值
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
已知P是橢圓
上的點,F(xiàn)
1、F
2分別是橢圓的左、右焦點,若
,則
的面積為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
橢圓
的中心、右焦點、右頂點及右準線與
x軸的交點依次為
O、F、G、H,則
的最大值為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓中心在原點,焦點在
軸上,離心率
,過橢圓的右焦點且垂直于長軸的弦長為
(1)求橢圓的標準方程;
(2)
為橢圓左頂點,
為橢圓上異于
的任意兩點,若
,求證:直線
過定點并求出定點坐標。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知中心在原點的橢圓
的一個焦點為
為橢圓上一點,
的面積為
(1)求橢圓
的方程;
(2)是否存在平行于
的直線
,使得直線
與橢圓
相交于
兩點,且以線段
為有經(jīng)的圓恰好經(jīng)過原點?若存在,求出
的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的右頂點為
,上頂點為
,直線
與橢圓交于不同的兩點
,若
是以
為直徑的圓上的點,當
變化時,
點的縱坐標
的最大值為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)過點
且斜率
為的直線
與橢圓
交于不同的兩點
,是否存在
,使得向量
與
共線?若存在,試求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
( 12分)如圖,橢圓的方程為
,其右焦點為F,把橢圓的長軸分成6等分,過每個等分點作x軸的垂線交橢圓上
半部于點
P1,P2,P3,P4,P5五個點,且|P
1F|+|P
2F|+|P
3F|+|P
4F|+|P
5F|=5
.
(1)求橢圓的方程;
(2)設直線
l過
F點(
l不垂直坐標軸),且與橢圓交于
A、B兩點,線段
AB的垂直平分線交x軸于點
M(m,0),試求
m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
.(本小題滿分14分)已知
的頂點
,
在橢圓
上,
在直線
上,且
.
(1)當
邊通過坐標原點
時,求
的長及
的面積;
(2)當
,且斜邊
的長最大時,求
所在直線的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)
已知橢圓
(a>b>0)的離心率
為
該橢圓上一點,
(I)求橢圓的方程.
(II)過點
作直線
與橢圓
相交于
點,若以
為直徑的圓經(jīng)原點
,求直線
的方程
查看答案和解析>>