【題目】如圖,兩圓外切于點(diǎn)T, PQ為的弦,直線(xiàn)PT、QT分別交于點(diǎn)R、S,分別過(guò)P、Q作的切線(xiàn)依次交于A、B、D、C,直線(xiàn)RD、SA分別交PQ于E、F。求證:。

【答案】見(jiàn)解析

【解析】

如圖,延長(zhǎng)CA至點(diǎn)M,聯(lián)結(jié)TA、TF、SR、SD、SC、AD.

易知SR//PQ,故∠PFA=∠ASR=∠PTA.從而,P、F、T、A四點(diǎn)共圓.

于是,∠FAD=∠FAT+∠TAD=∠FPT+∠TSD=∠TQD+∠TSD=∠SDC=∠SAC.

則AF平分∠DAM.

同理,延長(zhǎng)BD至點(diǎn)N,可證DE平分∠ADN.

又∠SFT=∠APT=∠SQP,有△SFT~△SQF.

于是,.

同理可得.

故SF=SD=SC,即S為△FCD的外心.從而,.

則CF平分∠ACD,所以,F(xiàn)為△ADC的旁心,

同理知E為△DAB的旁心.

因此,∠EAF=∠FAD-∠EAD

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,滿(mǎn)足,數(shù)列的前項(xiàng)為,滿(mǎn)足

(Ⅰ)設(shè),求證:數(shù)列為等比數(shù)列;

(Ⅱ)求的通項(xiàng)公式;

(Ⅲ)若對(duì)任意的恒成立,求實(shí)數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐的底面是邊長(zhǎng)為2的菱形,,平面,點(diǎn)是棱的中點(diǎn).

(1)證明:平面;

(2)當(dāng)時(shí),求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】A4紙是生活中最常用的紙規(guī)格.A系列的紙張規(guī)格特色在于:①A0、A1A2、A5,所有尺寸的紙張長(zhǎng)寬比都相同.②在A系列紙中,前一個(gè)序號(hào)的紙張以?xún)蓷l長(zhǎng)邊中點(diǎn)連線(xiàn)為折線(xiàn)對(duì)折裁剪分開(kāi)后,可以得到兩張后面序號(hào)大小的紙,比如1A0紙對(duì)裁后可以得到2A1紙,1A1紙對(duì)裁可以得到2A2紙,依此類(lèi)推.這是因?yàn)?/span>A系列紙張的長(zhǎng)寬比為1這一特殊比例,所以具備這種特性.已知A0紙規(guī)格為84.1厘米×118.9厘米.118.9÷84.1≈1.41≈,那么A4紙的長(zhǎng)度為( 。

A.厘米B.厘米C.厘米D.厘米

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓的方程為,直線(xiàn)l的方程為,點(diǎn)P在直線(xiàn)l上,過(guò)點(diǎn)P作圓的切線(xiàn)PA,PB,切點(diǎn)為AB.

1)若,求點(diǎn)P的坐標(biāo);

2)求證:經(jīng)過(guò)A,P,三點(diǎn)的圓必經(jīng)過(guò)異于的某個(gè)定點(diǎn),并求該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某超市,隨機(jī)調(diào)查了100名顧客購(gòu)物時(shí)使用手機(jī)支付的情況,得到如下的列聯(lián)表,已知從其中使用手機(jī)支付的人群中隨機(jī)抽取1人,抽到青年的概率為.

青年

中老年

合計(jì)

使用手機(jī)支付

60

不使用手機(jī)支付

28

合計(jì)

100

1)根據(jù)已知條件完成列聯(lián)表,并根據(jù)此資料判斷是否有99.9%的把握認(rèn)為超市購(gòu)物用手機(jī)支付與年齡有關(guān)”.

2)現(xiàn)按照使用手機(jī)支付不使用手機(jī)支付進(jìn)行分層抽樣,從這100名顧客中抽取容量為5的樣本,求從樣本中任選3人,則3人中至少2人使用手機(jī)支付的概率.

(其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合S={1,2,3,4,5,6},一一映射f:S→S滿(mǎn)足條件對(duì)于任意的x∈S,f(f(f(x)))=x。則滿(mǎn)足條件的映射f的個(gè)數(shù)是( )。

A. 81 B. 80 C. 40 D. 27

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)需要設(shè)計(jì)一個(gè)倉(cāng)庫(kù),它由上下兩部分組成,上部的形狀是正四棱錐PA1B1C1D1,下部的形狀是正四棱柱ABCDA1B1C1D1(如圖所示),并要求正四棱柱的高O1O是正四棱錐的高PO1的4倍.

(1)若AB=6 m,PO1=2 m,則倉(cāng)庫(kù)的容積是多少?

(2)若正四棱錐的側(cè)棱長(zhǎng)為6 m,則當(dāng)PO1為多少時(shí),倉(cāng)庫(kù)的容積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給圖中A,B,C,D,EF六個(gè)區(qū)域進(jìn)行染色,每個(gè)區(qū)域只染一種顏色,且相鄰的區(qū)域不同色.若有4種顏色可供選擇,則共有___種不同的染色方案.

查看答案和解析>>

同步練習(xí)冊(cè)答案