若曲線C:x2+y2+2ax-4ay+5a2-4=0上所有的點(diǎn)均在第二象限內(nèi),則a的取值范圍為( )
(A)(-∞,-2) (B)(-∞,-1)
(C)(1,+∞) (D)(2,+∞)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十第八章第一節(jié)練習(xí)卷(解析版) 題型:選擇題
已知△ABC三頂點(diǎn)坐標(biāo)A(1,2),B(3,6),C(5,2),M為AB中點(diǎn),N為AC中點(diǎn),則直線MN的方程為( )
(A)2x+y-8=0 (B)2x-y+8=0
(C)2x+y-12=0 (D)2x-y-12=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十八第八章第九節(jié)練習(xí)卷(解析版) 題型:選擇題
已知拋物線y=-x2+3上存在關(guān)于直線x+y=0對稱的相異兩點(diǎn)A,B,則|AB|等于( )
(A)3 (B)4 (C)3 (D)4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十二第八章第三節(jié)練習(xí)卷(解析版) 題型:解答題
如圖,
在平面直角坐標(biāo)系中,方程為x2+y2+Dx+Ey+F=0的圓M的內(nèi)接四邊形ABCD的對角線AC和BD互相垂直,且AC和BD分別在x軸和y軸上.
(1)求證:F<0.
(2)若四邊形ABCD的面積為8,對角線AC的長為2,且·=0,求D2+E2-4F的值.
(3)設(shè)四邊形ABCD的一條邊CD的中點(diǎn)為G,OH⊥AB且垂足為H.試用平面解析幾何的研究方法判斷點(diǎn)O,G,H是否共線,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十二第八章第三節(jié)練習(xí)卷(解析版) 題型:選擇題
當(dāng)a為任意實數(shù)時,直線(a-1)x-y+a+1=0恒過定點(diǎn)C,則以C為圓心,為半徑的圓的方程為( )
(A)x2+y2-2x+4y=0 (B)x2+y2+2x+4y=0
(C)x2+y2+2x-4y=0 (D)x2+y2-2x-4y=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十九第八章第十節(jié)練習(xí)卷(解析版) 題型:解答題
給定橢圓C:+=1(a>b>0),稱圓心在原點(diǎn)O,半徑為的圓是橢圓C的“準(zhǔn)圓”.若橢圓C的一個焦點(diǎn)為F(,0),其短軸上的一個端點(diǎn)到F的距離為.
(1)求橢圓C的方程和其“準(zhǔn)圓”的方程.
(2)點(diǎn)P是橢圓C的“準(zhǔn)圓”上的一個動點(diǎn),過動點(diǎn)P作直線l1,l2使得l1,l2與橢圓C都只有一個交點(diǎn),且l1,l2分別交其“準(zhǔn)圓”于點(diǎn)M,N.
①當(dāng)P為“準(zhǔn)圓”與y軸正半軸的交點(diǎn)時,求l1,l2的方程;
②求證:|MN|為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十九第八章第十節(jié)練習(xí)卷(解析版) 題型:選擇題
已知拋物線方程為y2=4x,直線l的方程為x-y+4=0,在拋物線上有一動點(diǎn)P到y軸的距離為d1,P到直線l的距離為d2,則d1+d2的最小值為( )
(A)+2 (B)+1 (C)-2 (D)-1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十三第八章第四節(jié)練習(xí)卷(解析版) 題型:選擇題
若直線2x-y+a=0與圓(x-1)2+y2=1有公共點(diǎn),則實數(shù)a的取值范圍是( )
(A)-2-<a<-2+
(B)-2-≤a≤-2+
(C)-≤a≤
(D)-<a<
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)二十第三章第四節(jié)練習(xí)卷(解析版) 題型:選擇題
如圖,為了研究鐘表與三角函數(shù)的關(guān)系,建立了如圖所示的坐標(biāo)系,設(shè)秒針針尖位置P(x,y).若初始位置為P0(,),當(dāng)秒針從P0(注:此時t=0)正常開始走時,點(diǎn)P的縱坐標(biāo)y與時間t的函數(shù)關(guān)系為( )
(A)y=sin(t+) (B)y=sin(-t-)
(C)y=sin(-t+) (D)y=sin(-t-)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com