【題目】已知函數(shù), 為常數(shù).
()若,求的取值范圍.
()若對(duì)任意的都有不等式成立,求的值.
()在()的條件下,若函數(shù)的圖像與軸恰有三個(gè)相異的公共點(diǎn),求實(shí)數(shù)的取值范圍.
【答案】();();().
【解析】試題分析:(1)對(duì)二次項(xiàng)系數(shù)進(jìn)行討論,分為符合題意, 時(shí),根據(jù)為此函數(shù)的性質(zhì)可得不合題意, 時(shí),解一元二次不等式可得結(jié)果;(2)根據(jù)一元二次不等式的性質(zhì)可得時(shí),不合題意,故應(yīng), ,從而可解出;(3)結(jié)合(2)中的結(jié)果將其利用分段函數(shù)進(jìn)行表達(dá),根據(jù)一次函數(shù)的性質(zhì)可得必有一根,解出方程得,根據(jù)二次函數(shù)的性質(zhì)可得必有兩個(gè)不等根,利用數(shù)形結(jié)合思想得,綜合可得最后結(jié)果.
試題解析:()當(dāng)時(shí), 時(shí), ,符合;
當(dāng)時(shí),開口向下,在上不能恒正,舍;
當(dāng)時(shí), ,
解得: 或,符合;綜上: 的范圍是.
(), ,對(duì)恒成立,
當(dāng)時(shí), ,不合題意(舍);當(dāng)時(shí),不合題意(舍);當(dāng)時(shí), ,即,∴綜上: .
(),
∴,
則,必有一根, , 或,
,必有兩個(gè)不等根,
∴,得,
綜上: 范圍 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù), . 在上有最大值9,最小值4.
(1)求實(shí)數(shù)的值;
(2)若不等式在上恒成立,求實(shí)數(shù)的取值范圍;
(3)若方程有三個(gè)不同的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“a=﹣1”是“直線ax+3y+2=0與直線x+(a﹣2)y+1=0平行”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某污水處理廠要在一個(gè)矩形污水處理池的池底水平鋪設(shè)污水凈化管道(, 是直角頂點(diǎn))來(lái)處理污水,管道越長(zhǎng),污水凈化效果越好.設(shè)計(jì)要求管道的接口是的中點(diǎn), 分別落在線段上.已知米, 米,記.
(1)試將污水凈化管道的總長(zhǎng)度 (即的周長(zhǎng))表示為的函數(shù),并求出定義域;
(2)問(wèn)當(dāng)取何值時(shí),污水凈化效果最好?并求出此時(shí)管道的總長(zhǎng)度.
(提示: .)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)正三棱錐A﹣BCD(底面是正三角形,頂點(diǎn)在底面的射影為底面中心)的所有頂點(diǎn)都在球O的球面上,BC=2,E,F(xiàn)分別是AB,BC的中點(diǎn),EF⊥DE,則球O的表面積為( )
A.
B.6π
C.8π
D.12π
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓.(14分)
(1)此方程表示圓,求m的取值范圍;
(2)若(1)中的圓與直線x+2y-4=0相交于M、N兩點(diǎn),且(O為坐標(biāo)原點(diǎn)),求m的值;
(3)在(2)的條件下,求以為直徑的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中,正確的個(gè)數(shù)是( )
①函數(shù)f(x)=2x﹣x2的零點(diǎn)有2個(gè);
②函數(shù)y=sin(2x+ )sin( ﹣2x)的最小正周期是π;
③命題“函數(shù)f(x)在x=x0處有極值,則f′(x0)=0”的否命題是真命題;
④ dx= .
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,設(shè)二次函數(shù)的圖像與兩坐標(biāo)軸有三個(gè)交點(diǎn),經(jīng)過(guò)這三點(diǎn)的圓記為
(1)求圓的方程;
(2)若過(guò)點(diǎn)的直線與圓相交,所截得的弦長(zhǎng)為4,求直線的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com