本題12分)
已知函數(shù).
(1)求的定義域;
(2)在函數(shù)的圖象上是否存在不同的兩點(diǎn),使得過這兩點(diǎn)的直線平行于x軸;
(3)當(dāng),b滿足什么條件時(shí),上恒取正值.
(1) (0,+∞).(2)函數(shù)y=f(x)的圖象上不存在不同的兩點(diǎn)使過兩點(diǎn)的直線平行于x軸.
(3)當(dāng)a≥b+1時(shí), f(x)在(1,+∞)上恒取正值.

試題分析:(1)由對(duì)數(shù)函數(shù)的真數(shù)大于零求解.
(2)當(dāng)函數(shù)在定義域上單調(diào)時(shí),則不存在,當(dāng)函數(shù)在定義域上不單調(diào)時(shí),則存在,所以要證明函數(shù)是否單調(diào),可用定義法,也可用導(dǎo)數(shù)法研究.
(3)由“f(x)在(1,+∞)上恒取正值”則需函數(shù)的最小值非負(fù)即可,由(2)可知是增函數(shù),所以只要f(1)≥0即可.
解。(1)由ax-bx>0,
得()x>1,且a>1>b>0,得>1,
所以x>0,即f(x)的定義域?yàn)?0,+∞).
(2)任取x1>x2>0,a>1>b>0,則ax1>ax2>0,bx1<bx2,所以ax1-bx1>ax2-bx2>0,
即lg(ax1-bx1)>lg(ax2-bx2).  故f(x1)>f(x2).
所以f(x)在(0,+∞)上為增函數(shù).
假設(shè)函數(shù)y=f(x)的圖象上存在不同的兩點(diǎn)A(x1,y1)、B(x2,y2),使直線平行于x軸,        則x1≠x2,y1=y(tǒng)2,這與f(x)是增函數(shù)矛盾.
故函數(shù)y=f(x)的圖象上不存在不同的兩點(diǎn)使過兩點(diǎn)的直線平行于x軸.
(3)因?yàn)閒(x)是增函數(shù),
所以當(dāng)x∈(1,+∞)時(shí),f(x)>f(1).  這樣只需f(1)=lg(a-b)≥0,
即當(dāng)a≥b+1時(shí),   f(x)在(1,+∞)上恒取正值.
點(diǎn)評(píng):解決該試題的關(guān)鍵是利用導(dǎo)數(shù)的幾何意義來表示切線的斜率,同時(shí)能利用對(duì)數(shù)的真數(shù)大于零得到定義域進(jìn)而研究其性質(zhì)。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分) 寫出已知函數(shù)  輸入的值,求y的值程序.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù),則f(x)-g(x)是
A.奇函數(shù)B.偶函數(shù)
C.既不是奇函數(shù)又不是偶函數(shù)D.既是奇函數(shù)又是偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知集合,,則(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的定義域?yàn)椋?nbsp;    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的定義域是, 則函數(shù)的定義域是         .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824001135116399.png" style="vertical-align:middle;" />,
(1)求;
(2)當(dāng)時(shí),求函數(shù)的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

函數(shù)的定義域是              。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

函數(shù),
(1)若的定義域?yàn)镽,求實(shí)數(shù)的取值范圍.
(2)若的定義域?yàn)閇-2,1],求實(shí)數(shù)的值

查看答案和解析>>

同步練習(xí)冊(cè)答案